- #141
- 5,584
- 24
Chapter 3: Forms
Exercise 3.19
Let [itex]||V_1 \times V_2|| \equiv A[/itex], the area of the parallelogram spanned by [itex]V_1[/itex] and [itex]V_2[/itex].
Now look at [itex]\omega (V_1,V_2)[/itex].
[itex]\omega (V_1,V_2)= w_1(a_1b_2-a_2b_1)+w_2(a_2b_3-a_3b_2)+w_3(a_3b_1-a_1b_3)[/itex]
Recalling that [itex]V_3=<w_2,w_3,w_1>[/itex] we have the following.
[itex]\omega (V_1,V_2)=V_3 \cdot (V_1 \times V_2)[/itex]
[itex]\omega (V_2,V_2)=||V_3||A cos( \theta )[/itex],
where [itex]\theta[/itex] is the angle between [itex]V_3[/itex] (and therefore [itex]l[/itex]) and both [itex]V_1[/itex] and [itex]V_2[/itex]. Noting that this dot product is maximized when [itex]\theta[/itex] is 90 degrees, we have our result.
Exercise 3.20
Let [itex]N \equiv V_1 \times V_2[/itex].
Recalling the action of [itex]\omega[/itex] on [itex]V_1[/itex] and [itex]V_2[/itex] from the last Exercise, we have the following.
[itex]\omega (V_1,V_2)=V_3 \cdot (V_1 \times V_2)[/itex]
Noting the definition of [itex]N[/itex] we see that we can immediately identify [itex]V_3[/itex] with [itex]V_{\omega}[/itex], and the desired result is obtained.
Exericise 3.21
Start by manipulating the expression given in the Exercise.
[itex]\omega= F_x dy \wedge dz - F_y dx \wedge dz + F_z dx \wedge dy[/itex]
[itex]\omega = F_z dx \wedge dy + F_x dy \wedge dz - F_y dx \wedge dz[/itex]
[itex]\omega = F_z dx \wedge dy + F_x dy \wedge dz + F_y dz \wedge dx[/itex]
I used commutativity of 2-forms under addition to get to line 2, and anticommutativity of 1-forms under the wedge product to get to line 3.
Noting that [itex]V_3=<c_1,c_2,c_3>=<w_2,w_3,w_1>[/itex] (Exercise 3.18) and noting that [itex]V_3=V_{\omega}[/itex] (Exercise 3.20), it can be seen that [itex]V_{\omega}=<F_x,F_y,F_z>[/itex]
Exercise 3.19
Let [itex]||V_1 \times V_2|| \equiv A[/itex], the area of the parallelogram spanned by [itex]V_1[/itex] and [itex]V_2[/itex].
Now look at [itex]\omega (V_1,V_2)[/itex].
[itex]\omega (V_1,V_2)= w_1(a_1b_2-a_2b_1)+w_2(a_2b_3-a_3b_2)+w_3(a_3b_1-a_1b_3)[/itex]
Recalling that [itex]V_3=<w_2,w_3,w_1>[/itex] we have the following.
[itex]\omega (V_1,V_2)=V_3 \cdot (V_1 \times V_2)[/itex]
[itex]\omega (V_2,V_2)=||V_3||A cos( \theta )[/itex],
where [itex]\theta[/itex] is the angle between [itex]V_3[/itex] (and therefore [itex]l[/itex]) and both [itex]V_1[/itex] and [itex]V_2[/itex]. Noting that this dot product is maximized when [itex]\theta[/itex] is 90 degrees, we have our result.
Exercise 3.20
Let [itex]N \equiv V_1 \times V_2[/itex].
Recalling the action of [itex]\omega[/itex] on [itex]V_1[/itex] and [itex]V_2[/itex] from the last Exercise, we have the following.
[itex]\omega (V_1,V_2)=V_3 \cdot (V_1 \times V_2)[/itex]
Noting the definition of [itex]N[/itex] we see that we can immediately identify [itex]V_3[/itex] with [itex]V_{\omega}[/itex], and the desired result is obtained.
Exericise 3.21
Start by manipulating the expression given in the Exercise.
[itex]\omega= F_x dy \wedge dz - F_y dx \wedge dz + F_z dx \wedge dy[/itex]
[itex]\omega = F_z dx \wedge dy + F_x dy \wedge dz - F_y dx \wedge dz[/itex]
[itex]\omega = F_z dx \wedge dy + F_x dy \wedge dz + F_y dz \wedge dx[/itex]
I used commutativity of 2-forms under addition to get to line 2, and anticommutativity of 1-forms under the wedge product to get to line 3.
Noting that [itex]V_3=<c_1,c_2,c_3>=<w_2,w_3,w_1>[/itex] (Exercise 3.18) and noting that [itex]V_3=V_{\omega}[/itex] (Exercise 3.20), it can be seen that [itex]V_{\omega}=<F_x,F_y,F_z>[/itex]
Last edited: