I A math confusion in deriving the curl of magnetic field from Biot-Savart

AI Thread Summary
The discussion centers on a confusion regarding the derivation of the curl of the magnetic field from the Biot-Savart law as presented in Griffiths' "Introduction to Electrodynamics." A specific concern is raised about why the second term in equation 5.55 is zero, particularly when the current density J approaches infinity. The poster seeks clarification on how to demonstrate that the surface integral also results in zero under these conditions. The inquiry highlights a desire for a clear explanation to resolve this mathematical confusion. Overall, the thread emphasizes the need for understanding the behavior of integrals in electromagnetic theory.
Brian Tsai
Messages
1
Reaction score
1
TL;DR Summary
Why the surface integral is 0 even the J itself extends to infinity (as in the case of an infinite straight wire).
I am recently reading "Introduction to Electrodynamics, Forth Edition, David J. Griffiths " and have a problem with the derive of the curl of a magnetic field from Biot-Savart law. The images of pages (p.232~p233) are in the following:

螢幕擷取畫面 2023-04-03 133932.png

螢幕擷取畫面 2023-04-03 134140.png

The second term in 5.55(page 233) is 0. I had known the reason in case of that the current density declined to 0 on the surface. My question is how to prove the surface integral will also be 0 when J extends to infinite(red block).

P.S. : This is my first time asking a question in English, and I had done my best to decrease the improper use of English. I sincerely hope that anyone who notices my post can answer my confusion and don't be mad at my terrible use in English
 
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (Second part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8. I want to understand some issues more correctly. It's a little bit difficult to understand now. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. In the page 196, in the first paragraph, the author argues as follows ...
Thread 'Inducing EMF Through a Coil: Understanding Flux'
Thank you for reading my post. I can understand why a change in magnetic flux through a conducting surface would induce an emf, but how does this work when inducing an emf through a coil? How does the flux through the empty space between the wires have an effect on the electrons in the wire itself? In the image below is a coil with a magnetic field going through the space between the wires but not necessarily through the wires themselves. Thank you.
Back
Top