A special case of the grand canonical ensemble

AI Thread Summary
The discussion focuses on the application of the grand canonical ensemble to an Einstein Solid, specifically under conditions where internal energy U is constant and the number of particles N is large. It explores whether chemical potential µ and temperature T can be used in the grand partition function, referencing specific equations for their definitions. The grand partition function is expressed, and the average value of N is calculated using the derived equations. The relationship between µ, q, and N is established, leading to a final form of µ that aligns with the assumptions made. The central question remains whether equation (8) can be effectively utilized within the grand partition function framework.
Ted Ali
Messages
11
Reaction score
1
Homework Statement
Can we consider the internal energy ##U## constant and only allow for the number of particles ##N## to vary, in the grand canonical ensemble?
Relevant Equations
$$\mu = -T \left(\frac{\partial S}{\partial N}\right)_{U,V} \hspace{1cm} (1)$$
$$\frac{1}{T} = \left(\frac{\partial S}{\partial U} \right) \hspace{1cm} (2)$$
In addition to the homework statement and considering only the case where ##U= constant## and ##N = large## : Can we also consider the definition of chemical potential ##\mu## and temperature ##T## as in equations ##(1)## and ##(2)##, and use them in the grand partition function?

More specifically, we can take the case of an Einstein Solid and the Schroeder's definition of internal energy ##U = qhf##. Assuming that ##U## is depending only on a constant number of energy quanta ##q## and allowing only ##N## to vary. Can we use the grand partition function and ##(1), (2)##, for calculating the average value of ##N##? In this case of an Einstein Solid, we also assume that ##N \gg q##.

The grand partition function is given by: $$Q_{(\alpha, \beta)} = \sum_{N=0}^{\infty} e^{\alpha N} Z_{N}(\alpha, \beta) \hspace{1cm} (3)$$
And: $$\bar{N} =\left( \frac{\partial\ln{Q}}{\partial \alpha}\right)_\beta \hspace{1cm} (4)$$
Where: $$\beta = \frac{1}{kT} \hspace{1cm} \alpha = \frac{\mu}{kT} \hspace{1cm} (5)$$
$$Z_1 = 1/ (1 - e^{-\frac{hf}{kT}})\hspace{1cm}(6)$$
And: $$Z_N = (Z_1)^N \hspace{1cm}(7)$$
Under the above conditions and equations:
$$\mu = -kT\frac{q}{N} = \frac{kT}{1 - e^{hf/kT}}\hspace{1cm} (8)$$
 
Last edited:
Physics news on Phys.org
Temperature ##T## is given by equation ##(2)##, in the microcanonical ensemble and calculated in Wikipedia (https://en.wikipedia.org/wiki/Einstein_solid). The final result is: $$\frac{q}{N} = \frac{1}{e^{hf/kT} - 1}\hspace{1cm} (9)$$
The chemical potential ##\mu## is given by ##(1)##, when ##U, V## are held constant. The calculation of ##(1)## can be found in the solutions manual of D. Schroeder's book: "An Introduction to Thermal Physics". The final result is $$\mu = -kT\ln(1+ \frac{q}{N})\hspace{1cm} (10)$$ (exercise 3.36).
In the case we examine it is assumed that ##N \gg q## so ##(10)## becomes: $$\mu = -kT\frac{q}{N}\hspace{1cm} (11)$$
From ##(9)## and ##(11)## we have equation ##(8)##, in its final form.
Finally let's comment that in ##(6)##, we have neglected the ground state energy of each one quantum harmonic oscillator of the Einstein solid, in the calculation of the canonical partition function (https://en.wikipedia.org/wiki/Einstein_solid). And that in ##(7)## we have assumed that the oscillators are distinguishable.
Equations ##(3), (4), (5)## come from M. Bellac's book: "Equilibrium and non-Equilibrium Statistical Thermodynamics", pg. 148.
So the "sum" of the questions still remains open: Can we use ##(8)## in the grand partition function?
 
Last edited:
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top