A A Unified Theory of Relativity and Particle Physics

Basicsofphysics
Messages
2
Reaction score
0
Is there a peer reviewed paper that proposes a way to connect the relativity of time dilation, length contraction and the relative effects of gravitation per acceleration with respect to mass with the standard model of particle physics? An established theory which also takes into account both dark matter, dark energy and quantum entanglement?
 
Physics news on Phys.org
Basicsofphysics said:
Is there a peer reviewed paper that proposes a way to connect the relativity of time dilation, length contraction and the relative effects of gravitation per acceleration with respect to mass with the standard model of particle physics? An established theory which also takes into account both dark matter, dark energy and quantum entanglement?
If not, how do I go about it?
 
Basicsofphysics said:
If not, how do I go about it?
Since you want to make mass the central concept of your grand theory, study how the Higgs mechanism is supposed to work and see if you find it acceptable.
 
Basicsofphysics said:
with the standard model of particle physics

Standard Model is fully campatible with special relativity.
 
weirdoguy said:
Standard Model is fully campatible with special relativity.

Correct. The much harder part is reconciling general relativity (i.e. gravity) with the Standard Model. There is also no consensus solution to explaining dark matter, although there are several viable theories that are consistent with all available evidence to a reasonable extent that may be salvageable. Dark energy can be fully explained with the cosmological constant, although tensions between this very simple model and the data are growing and now approach three sigma. Many alternative dark energy theories have been proposed, most of which are viable to explain that one question.
 
  • Like
Likes Andrew Kim
The state of dark energy models is discussed here:

arXiv:1607.06262 [pdf, other]
Comparison of dark energy models after Planck 2015
Yue-Yao Xu, Xin Zhang

We make a comparison for ten typical, popular dark energy models according to theirs capabilities of fitting the current observational data. The observational data we use in this work include the JLA sample of type Ia supernovae observation, the Planck 2015 distance priors of cosmic microwave background observation, the baryon acoustic oscillations measurements, and the direct measurement of the Hubble constant. Since the models have different numbers of parameters, in order to make a fair comparison, we employ the Akaike and Bayesian information criteria to assess the worth of the models. The analysis results show that, according to the capability of explaining observations, the cosmological constant model is still the best one among all the dark energy models. The generalized Chaplygin gas model, the constant w model, and the α dark energy model are worse than the cosmological constant model, but still are good models compared to others. The holographic dark energy model, the new generalized Chaplygin gas model, and the Chevalliear-Polarski-Linder model can still fit the current observations well, but from an economically feasible perspective, they are not so good. The new agegraphic dark energy model, the Dvali-Gabadadze-Porrati model, and the Ricci dark energy model are excluded by the current observations.
 
this thread is to open up discussion on Gravi-GUT as theories of everything GUT or Grand Unified Theories attempt to unify the 3 forces of weak E&M and strong force, and Gravi-GUT want to add gravity. this peer reviewed paper in a journal on Gravi-GUT Chirality in unified theories of gravity F. Nesti1 and R. Percacci2 Phys. Rev. D 81, 025010 – Published 14 January, 2010 published by Physical Review D this paper is cited by another more recent Gravi-GUT these papers and research...
In post #549 here I answered: And then I was surprised by the comment of Tom, asking how the pairing was done. Well, I thought that I had discussed it in some thread in BSM, but after looking at it, it seems that I did only a few sparse remarks here and there. On other hand, people was not liking to interrupt the flow of the thread and I have been either contacted privately or suggested to open a new thread. So here it is. The development can be traced in some draft papers...
Back
Top