- #1
Ohm113
- 1
- 0
- TL;DR Summary
- In a lossy dielectric with constant eps and tanD, does the energy loss increase with dc-bias while keeping the ac voltage and frequency constant?
Hi there,
if a dielectric (capacitor) is described with a constant permittivit eps (or C) and loss-tangent DF, how much energy ist lost when charging the capacitor by 1V?
For example: C=1, DF=0.1.
When charging from 0 to 1V, the lost energy (in J) is ...?
When charging from 1V to 2V, the lost energy (in J) is?
Since DF is the fraction of dissipation to stored energy, I would say the lost energy for the 1->2 transition is 3x that of the 0->1 transition. However, if a ESR equivalent resitance is calculated using ESR=DF*omega*C and that is used in a circuit simulator, the energy loss is the same for both transitions. However, the ESR approach might only be possible for pure AC signals without bias and also with a constant sinus shape. Looking forward for your discussions!
Thanks, Ohm
if a dielectric (capacitor) is described with a constant permittivit eps (or C) and loss-tangent DF, how much energy ist lost when charging the capacitor by 1V?
For example: C=1, DF=0.1.
When charging from 0 to 1V, the lost energy (in J) is ...?
When charging from 1V to 2V, the lost energy (in J) is?
Since DF is the fraction of dissipation to stored energy, I would say the lost energy for the 1->2 transition is 3x that of the 0->1 transition. However, if a ESR equivalent resitance is calculated using ESR=DF*omega*C and that is used in a circuit simulator, the energy loss is the same for both transitions. However, the ESR approach might only be possible for pure AC signals without bias and also with a constant sinus shape. Looking forward for your discussions!
Thanks, Ohm