B Acceleration -- How is the intermediate displacement speed derived?

AI Thread Summary
The discussion centers on the application of SUVAT equations, particularly in the context of deriving intermediate displacement speed under constant acceleration. It emphasizes the importance of formulating clear questions to effectively solve problems in physics. A proposed formula for intermediate speed is critiqued, with corrections provided to align it with established SUVAT principles. The correct expression for speed is clarified, ensuring it meets the criteria for a valid physical equation. Understanding and applying SUVAT equations is essential for solving related motion problems accurately.
huc369
Messages
7
Reaction score
0
TL;DR Summary
How is the intermediate displacement speed derived?
I don't know if I wrote it correctly
微信图片_20221007125631.jpg
 
Physics news on Phys.org
Do you know any SUVAT equations?
 
PeroK said:
SUVAT
Thank you very much, I will google it
 
How do you know that the "SUVAT Equations" apply? I don't understand, which problem is to be solved to begin with. Without asking a clear question, you can't get anything done in science!
 
huc369 said:
Summary: How is the intermediate displacement speed derived?

I don't know if I wrote it correctlyView attachment 315157
Since SUVAT involves constant-acceleration,
and constant-velocity (zero acceleration) is a special case,
consider your proposed formula in the zero-acceleration case, where ##v_0=v_B=v_T##
(where B represents the intermediate displacement: ##(x_B-x_0)=\frac{1}{2}(x_T-x_0)## in your time interval ##0\leq t\leq T##).

Assume ##v_B>0##.
Your proposed formula would read
$$v_B=\frac{\sqrt{(v_B)^2+(v_B)^2}}{2}=\frac{v_B}{\sqrt{2}}\qquad\mbox(false).$$
Instead, it should (based on the symbols available in your recollection) be
$$v_B=\sqrt{ \frac{(v_0)^2+(v_T)^2}{2}}$$
so that $$v_B=\sqrt{ \frac{(v_B)^2+(v_B)^2}{2}}=v_B.$$
(Technically, to be a speed, the left-hand side should be ##|v_B|##.)

Now, following @PeroK 's suggestion to your question,
this could be derived using SUVAT (the constant acceleration equations).
 
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Scalar and vector potentials in Coulomb gauge Assume Coulomb gauge so that $$\nabla \cdot \mathbf{A}=0.\tag{1}$$ The scalar potential ##\phi## is described by Poisson's equation $$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}\tag{2}$$ which has the instantaneous general solution given by $$\phi(\mathbf{r},t)=\frac{1}{4\pi\varepsilon_0}\int \frac{\rho(\mathbf{r}',t)}{|\mathbf{r}-\mathbf{r}'|}d^3r'.\tag{3}$$ In Coulomb gauge the vector potential ##\mathbf{A}## is given by...
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (First part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8 and stuck at some statements. It's little bit confused. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. Solution : The surface bound charge on the ##xy## plane is of opposite sign to ##q##, so the force will be...
Back
Top