A Algebraic form of Klein Gordon ##\phi^4## vacuum and ladder operators

QFT1995
Messages
29
Reaction score
1
In theory, does an algebraic expression exist for the ground state of the Klein Gordon equation with \phi^4 interactions in the same way an algebraic expression exists for the simple harmonic oscillator ground state wavefunction in Q.M.? Is it just that it hasn't been found yet or is it impossible to construct? Also, will the creation and annihilation operators have an explicit differential representation that you can explicitly construct (like for that of the simple harmonic oscillator) or is it not possible?
 
Physics news on Phys.org
There's no explicit form for the full vacuum |{\Omega}\rangle on there. I was wondering if in principle it can exist as an algebraic expression. Also the creation and annihilation operators are just defined by how they act on the free vacuum |{0}\rangle as an abstract definition. I'm not sure if we can write them down because in QFT, particle number is not conserved.
 
QFT1995 said:
ground state of the Klein Gordon equation with ϕ4ϕ4\phi^4 interactions in the same way an algebraic expression exists for the simple harmonic oscillator
The zero dimensional ##\phi^4## interaction is the simple harmonic oscillator with an ##x^4## perturbation. This has been studied. I'm pretty sure there is no explicit solution in any sense.
 
  • Like
Likes vanhees71
Okay however I was asking if in principle it exists and that we just haven't found it or is it impossible to construct?
 
It does not exist (Summers, p.5) but in 1+1 dimensional space time a new Hilbert space with a vacuum state can be defined by the GNS construction (p.7).
 
  • Like
Likes vanhees71 and dextercioby
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Back
Top