MHB An Elegant Solution to a Tricky Integral

  • Thread starter Thread starter sbhatnagar
  • Start date Start date
  • Tags Tags
    Integral
AI Thread Summary
The integral \[ \int \frac{\sin(x)-\cos(x)}{(\sin{(x)}+\cos{(x)})\sqrt{\sin(x)\cos(x)+ \sin^2(x)\cos^2(x)}} dx \]can be evaluated using a substitution where \( t = \sin(x) + \cos(x) \). This transforms the integral into a more manageable form, leading to \[ -\arctan\left(\sqrt{[\sin(x)+\cos(x)]^4-1}\right)+C. \]Another approach involves rewriting the integrand in terms of \( \cos(2x) \) and using the substitution \( u = 1 + \sin(2x) \), resulting in \[ -\sec^{-1}(\sin(2x)+1)+C. \]Both methods demonstrate the effectiveness of strategic substitutions in simplifying complex integrals.
sbhatnagar
Messages
87
Reaction score
0
Evaluate the integral

\[ \int \frac{\sin(x)-\cos(x)}{(\sin{(x)}+\cos{(x)})\sqrt{\sin(x)\cos(x)+ \sin^2(x)\cos^2(x)}} dx\]

The problem above is not necessarily difficult; however, it can be almost impossible to evaluate if one doesn’t know the right “trick”.
 
Mathematics news on Phys.org
I would do the following:
Let \[\sin(x)+\cos(x)=t \Rightarrow [\cos(x)-\sin(x)]dx=dt \Rightarrow -[(\sin(x)-\cos(x)]dx=dt \Rightarrow [\sin(x)-\cos(x)]dx=-dt \]
and \[\sin(x)\cos(x)=\frac{t^2-1}{2} \]

Thus, the integral becomes:
\[ - \int \frac{dt}{t\sqrt{\frac{t^2-1}{2}\left(1+\frac{t^2-1}{2}\right)}}=-2 \int \frac{dt}{t\sqrt{t^4-1}}=\frac{-1}{2} \int \frac{4t^3}{t^4\sqrt{t^4-1}}\]

Let \[ t^4-1= u \Rightarrow 4t^3dt=du \] so the integral becomes:
\[ \frac{-1}{2} \int \frac{du}{(u+1)\sqrt{u}}=-\arctan(\sqrt{u})\]

Doing the back-substitution we obtain:
\[- \arctan\left(\sqrt{[\sin(x)+\cos(x)]^4-1}\right)+C\]

I'm not sure my attempt is correct.
 
Last edited:
Hi Siron! You made it. Here's my idea:

\[ \begin{align*} \int \frac{\sin(x)-\cos(x)}{(\sin{(x)}+\cos{(x)})\sqrt{\sin(x)\cos(x)+ \sin^2(x)\cos^2(x)}} dx &= -\int \frac{\cos^2(x)-\sin^2(x)}{(1+2\sin{(x)}\cos{(x)})\sqrt{\sin(x) \cos(x)(\sin(x)\cos(x)+1)}} dx\\ &= -\int \frac{\cos(2x)}{(1+\sin(2x))\sqrt{\frac{\sin(2x)}{2} \left( \frac{\sin(2x)}{2}+1 \right)}} dx \\ &= -\int \frac{2\cos(2x)}{(1+\sin(2x))\sqrt{\sin(2x)(\sin(2x)+2)}} dx\end{align*}\]

By the substitution \( u=1+\sin(2x) \),

\[ -\int \frac{1}{u\sqrt{u^2-1}}du =-\sec^{-1}(u)+C=-\sec^{-1}(\sin(2x)+1)+C \]
 
Last edited:
sbhatnagar said:
Hi Siron! You made it. Here's my idea:

\[ \begin{align*} \int \frac{\sin(x)-\cos(x)}{(\sin{(x)}+\cos{(x)})\sqrt{\sin(x)\cos(x)+ \sin^2(x)\cos^2(x)}} dx &= -\int \frac{\cos^2(x)-\sin^2(x)}{(1+2\sin{(x)}\cos{(x)})\sqrt{\sin(x) \cos(x)(\sin(x)\cos(x)+1)}} dx\\ &= -\int \frac{\cos(2x)}{(1+\sin(2x))\sqrt{\frac{\sin(2x)}{2} \left( \frac{\sin(2x)}{2}+1 \right)}} dx \\ &= -\int \frac{2\cos(2x)}{(1+\sin(2x))\sqrt{\sin(2x)(\sin(2x)+2)}} dx\end{align*}\]

By the substitution \( u=1+\sin(2x) \),

\[ -\int \frac{1}{u\sqrt{u^2-1}}du =-\sec^{-1}(u)+C=-\sec^{-1}(\sin(2x)+1)+C \]
why we chose u=1+\sin(2x)
 
oasi said:
Why substitute $u=1+\sin(2x)$?

...because it make the solution easy.
 
I wouldn't consider that argument enough to say why it works, and actually, the answer is very simple, for the one who asked why it works, just check the integrand, and see the derivative of the substitution involved, everything works nicely.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Back
Top