- #106
artis
- 1,481
- 976
Well someone already mentioned this here that the bulb will light up later if the wires to the bulb have insulation around them. This I think is the simplest proof that the energy travels as fields and current is just the result of those fields. Insulation attenuates the field, it's propagation velocity decreases and boom there is your proof.
As for the transmission line and transients if the wire was not superconducting then the bulb would never light up I think simply due to the huge resistance, but a transient would still reach the bulb? I think this because the wires closer to the battery would have a higher voltage than the wire further away and since this is a transmission line the capacitance is equally spaced across the length so there would still be some capacitance in the parts of thew wire that are close to battery between those that are opposite to them and close to bulb.
So the transient would not light up the bulb but a sensitive voltmeter should be able to pick it up across the bulb?
As for the transmission line and transients if the wire was not superconducting then the bulb would never light up I think simply due to the huge resistance, but a transient would still reach the bulb? I think this because the wires closer to the battery would have a higher voltage than the wire further away and since this is a transmission line the capacitance is equally spaced across the length so there would still be some capacitance in the parts of thew wire that are close to battery between those that are opposite to them and close to bulb.
So the transient would not light up the bulb but a sensitive voltmeter should be able to pick it up across the bulb?