I Angle-Preserving Linear Transformations in 2D Space for Relativity

Shirish
Messages
242
Reaction score
32
I'm watching this minutephysics video on Lorentz transformations (part starting from 2:13 and ending at 4:10). In my spacetime diagram, my worldline will be along the ##ct## axis and the worldline of an observer moving relative to me will be at some angle w.r.t. the ##y## axis.

When we switch to the other observer's spacetime diagram, the observer's worldline will be along the ##y## axis and my worldline would flip over to the other side, but the angle between the worldlines would be preserved. Then the video goes on to mention three possibilities:

hHR59.png


The event at ##(2,4)## ends up getting mapped to ##(0,T)##, where ##T<4##, ##T=4## or ##T>4##. And it seems like the video is suggesting only one possible transformation for each case, giving a total of only three possible transformations. For an angle preserving transformation ##A##, given any two unit vectors ##u_1,u_2##, $$[u_1]^TM[u_2]=[u_1]^TA^TMA[u_2]\implies M=A^TMA$$ where ##M## is the metric we're assuming for the space. Seems like (though I'm not a 100% sure) the ##T>4## possibility corresponds to rotation (Euclidean, sure about this one), ##T=4## to Galilean boost (Galilean) and ##T<4## to Lorentz boost (Minkowski metric).

But why is it being suggested that only these three transformations (satisfying the angle preservation and linearity properties) are possible? Is it possible to find any other transformations than rotation for the case of ##T>4##, or other than Lorentz for ##T<4##, etc.? If not, can anyone direct me to a proof or explanation of why only three transformations are possible?

(Specifically a mathematical argument/proof of why Euclidean, Galilean and Lorentz must be the only linear angle-preserving transformations in flat geometry would be nice)
 
Physics news on Phys.org
He discusses on x-t diagram so rotation which includes y,z coordinate is a digression from his scenario. It has nothing to do with your T discussion. Inversion and displacement, neither.
Galilean transformation was revealed not to be a right one to describe nature.
 
Small edit to my original post since I'm not finding the option to directly edit: in the first 2 paragraphs, I miswrote ##ct## axis as ##y## axis.
 
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
Back
Top