Angular Velocity from KE, radius, and mass

AI Thread Summary
The discussion focuses on calculating the angular velocity of a rod with a given rotational kinetic energy. The initial equation used, w^2 = (4*K)/(mr^2), was deemed incorrect by the user. To solve the problem accurately, the moment of inertia (I) must be correctly defined, particularly for a uniform rod, which is I = (1/3)mr^2. The correct approach involves using the rotational kinetic energy formula KE = (1/2)Iω^2 and ensuring proper unit conversions to obtain the angular velocity in rpm. Clarity in calculations and the correct application of relevant equations are essential for arriving at the right answer.
aivilo775
Messages
5
Reaction score
0
Homework Statement
A 45-cm-long, 95 g rod rotates about an axle at one end of the rod. At what angular velocity, in rpm , does the rod have 50 mJ of rotational kinetic energy?
Relevant Equations
Not given
I tried using the equation w^2 = (4*K)/(mr^2) but I don't think this is right... I got my answer to be 3.2243 and that's not correct
 
Physics news on Phys.org
aivilo775 said:
Homework Statement::
A 45-cm-long, 95 g rod rotates about an axle at one end of the rod. At what angular velocity, in rpm , does the rod have 50 mJ of rotational kinetic energy?
Relevant Equations:: Not given

I tried using the equation w^2 = (4*K)/(mr^2) but I don't think this is right... I got my answer to be 3.2243 and that's not correct
Hello @aivilo775 ,

:welcome:

Under Relevant Equations, you should supply whatever equations are relevant to your problem, such as: ##KE=(1/2)I\omega^2##
for the problem you posted.

Also of importance is what you use to get the moment of inertia, ##I## .

You need to be more detailed as to how you obtained your result. Also be careful with units and define symbols.
 
  • Like
Likes PhDeezNutz and topsquark
Screen Shot 2022-10-26 at 9.54.32 PM.png

This is the math I did when I rearranged
Screen Shot 2022-10-26 at 9.54.47 PM.png
to solve for w, angular velocity. I used I = mr^2. I got w = 2.27995. The units would be the sqrt of(J /kg*m^2), which ends up just being 1/sec. to get the answer in rpm, I figured I would multiply w by 60sec (to get w = 136.797, but this wasn't right
 
Please use LaTeX to write your equations in symbolic form. It is not at all clear what the numbers you posted in #3 are all about. Also, what is the moment of inertia of the rod? Look it up.
 
aivilo775 said:
I used I = mr^2
It's a uniform rod, not a point mass.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top