Aperiodicity of a Markov Chain

.....
Messages
53
Reaction score
0

Homework Statement



Transition matrix is

0 0 1
0 0 1
(1/3) (2/3) 0

"argue that this chain is aperiodic"


Homework Equations



definition of aperiodicity - there must exist a time n such that there is a non-zero probability of going from state i to state j for all i & j

The Attempt at a Solution



This definition doesn't seem to hold for my chain ... for example, to go from state 1 to state 2 n has to be odd.. but to go from state 1 to state 1 or 3 n has to be even..

Am I just getting this definition muddled up? Could someone elaborate on it for me? Thanks
 
Physics news on Phys.org
anyone?
 
The chain is aperiodic 1->3->2->3->1
You can get from any position to any other (it doesn't have to be in one step..)
 
Yeah, I can see it's not periodic and hence must be apeiodic, but what's going on with that definition? My understanding of it is that there has to be a special (fixed) value of n where you can go from anyone state to all the others, including back to that state... but that doesn't seem to hold here... thanks for replying
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top