MHB Approximating Functions with 3rd Order Taylor Polynomials

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Polynomials
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{242.13.1}$
$\textsf{a. Find the $3^{rd}$ Taylor polynomial for $\sec{x}$ at $a=0$}\\$
\begin{align}
\displaystyle
f^0(x)&=f(x)=\sec{x}\therefore f^0(0)=1\\
&=\frac{1}{0!} x^0=1 \\
f^1(x)&=(\sec{x})'=\tan{x}\sec{x} \therefore f^1(x)=0 \\
&=\frac{1}{0!} x^0+\frac{0}{1!} x^1=1+0=1 \\
f^2(x)&=(\tan{x}\sec{x})'=\left(2\tan^2(x)+1)\sec(x)\right) \therefore f^2(x)=1 \\
&=\frac{1}{0!} x^0
+\frac{0}{1!} x^1
+\frac{1}{2!} x^2=1+0+\frac{1}{2}x^2 \\
&=1+\frac{1}{2}x^2
\end{align}
$\textsf{b. Find the $3^{rd}$
Taylor polynomial for $x^{1/3}$ at $a=8$}\\$
\begin{align}
\displaystyle
f^0(x)&=f(x)= x^{1/3}\therefore f^0(8)=2\\
f^1(x)&=(x^{1/3})'=\frac{1}{3x^{2/3}}
\therefore f^1(8)=\frac{1}{12} \\
f^2(x)&=\left(\frac{1}{3x^{2/3}}\right)''
=\frac{-2}{9x^{5/3}}
\therefore f^2(8)=\frac{-1}{144} \\
f^3(x)&=\left(\frac{-2}{9x^{5/3}}\right)''
=\frac{10}{27x^{8/3}}
\therefore f^3(8)=\frac{5}{3456} \\

f(x)&\approx\frac{2}{0!}(x-8)^{0}
+\frac{\frac{1}{12}}{1!}\left(x-\left(8\right)\right)^{1}
+\frac{- \frac{1}{144}}{2!}\left(x-\left(8\right)\right)^{2}
+\frac{\frac{5}{3456}}{3!}\left(x-\left(8\right)\right)^{3}\\
\sqrt[3]{x}&\approx 2+\frac{1}{12}\left(x-8\right)- \frac{1}{288}\left(x-8\right)^{2}+\frac{5}{20736}\left(x-8\right)^{3}
\end{align}
wasn't sure what was meant by the $3^{rd}$ ?
took time to do this so think is some error
☕
 
Last edited:
Physics news on Phys.org
karush said:
wasn't sure what was meant by the $3^{rd}$ ?
took time to do this so think is some error
Usually when someone writes "$n$th Taylor polynomial" they mean the polynomial going up to and including the term of degree $n$. In general, this polynomial will have $n+1$ terms. So careful authors usually prefer to call it the "$n$th degree Taylor polynomial".

Your calculations both look correct to me, though in a. you should probably have calculated $f^3(x)$ in order to check that $f^3(0) = 0.$
 
$\textsf{ok so $\displaystyle 3^{rd}$ would mean
$\displaystyle f^0 + f^1+f^2+f^3$ to be input.}$
 
$\tiny{242.13.1}$
$\textsf{a. Find the $3^{rd}$ Taylor polynomial for $\sec{x}$ at $a=0$}\\$
\begin{align}
\displaystyle
f^0(x)&=\sec{x}\therefore f^0(0)=1\\
f^1(x)&=(\sec{x})'=\tan{x}\sec{x} \therefore f^1(0)=0 \\
f^2(x)&=(\tan{x}\sec{x})'=\left(2\tan^2(x)+1)\sec(x)\right) \therefore f^2(0)=1 \\
f^3(x)&=\sec\left(x\right)\tan^3\left(x\right)
+5\sec^3\left(x\right)\tan\left(x\right)=f^3(0)=0 \\
&=\frac{1}{0!} x^0
+\frac{0}{1!} x^1
+\frac{1}{2!} x^2
+\frac{0}{3!} x^3 \\
&=1+0+\frac{1}{2}x^2 +0 \\
sec(x)&=1+\frac{1}{2}x^2
\end{align}
$\textsf{b. Find the $3^{rd}$
Taylor polynomial for $x^{1/3}$ at $a=8$}\\$
\begin{align}
\displaystyle
f^0(x)&=f(x)= x^{1/3}\therefore f^0(8)=2\\
f^1(x)&=(x^{1/3})'=\frac{1}{3x^{2/3}}
\therefore f^1(8)=\frac{1}{12} \\
f^2(x)&=\left(\frac{1}{3x^{2/3}}\right)''
=\frac{-2}{9x^{5/3}}
\therefore f^2(8)=\frac{-1}{144} \\
f^3(x)&=\left(\frac{-2}{9x^{5/3}}\right)''
=\frac{10}{27x^{8/3}}
\therefore f^3(8)=\frac{5}{3456} \\

f(x)&\approx\frac{2}{0!}(x-8)^{0}
+\frac{\frac{1}{12}}{1!}\left(x-\left(8\right)\right)^{1}
+\frac{- \frac{1}{144}}{2!}\left(x-\left(8\right)\right)^{2}
+\frac{\frac{5}{3456}}{3!}\left(x-\left(8\right)\right)^{3}\\
\sqrt[3]{x}&\approx 2+\frac{1}{12}\left(x-8\right)- \frac{1}{288}\left(x-8\right)^{2}+\frac{5}{20736}\left(x-8\right)^{3}
\end{align}
 
Last edited:
For original Zeta function, ζ(s)=1+1/2^s+1/3^s+1/4^s+... =1+e^(-slog2)+e^(-slog3)+e^(-slog4)+... , Re(s)>1 Riemann extended the Zeta function to the region where s≠1 using analytical extension. New Zeta function is in the form of contour integration, which appears simple but is actually more inconvenient to analyze than the original Zeta function. The original Zeta function already contains all the information about the distribution of prime numbers. So we only handle with original Zeta...

Similar threads

Replies
6
Views
2K
Replies
3
Views
3K
Replies
6
Views
3K
Replies
3
Views
3K
Replies
3
Views
1K
Replies
20
Views
4K
Back
Top