Are Kinetic and Potential Energy Densities Equal in Stationary Waves?

AI Thread Summary
The discussion centers on demonstrating that the potential and kinetic energy densities in a stationary wave are not equal. The participants analyze the wave equation and the general form of a stationary wave, leading to the conclusion that if the energy densities were equal, a specific mathematical relationship would hold true, which does not generally apply. They confirm that a stationary wave is formed by two traveling waves moving in opposite directions, supporting the validity of the wave equation used. The conversation also touches on the proper representation of stationary waves, emphasizing the importance of understanding their formation. Ultimately, the proof is accepted as valid, reinforcing the distinction between kinetic and potential energy densities in stationary waves.
bananabandana
Messages
112
Reaction score
5

Homework Statement


Show that the potential and kinetic energy densities for a stationary wave are not equal.

Homework Equations


A) The 1-D Wave Equation:
$$ \frac{\partial^{2} \psi}{\partial x^{2}} = \frac{1}{v^{2}} \frac{\partial^{2}\psi}{\partial t^{2}}$$
B) The general form of a stationary wave: (?)
$$ \psi(x,t) = f(x+vt) +f(x-vt) $$

C)Formula for total energy density in a stationary wave: (w)
$$ w = \frac{\mu}{2}\bigg[ v^{2}\big(\frac{\partial \psi}{\partial x} \big)^{2}+\big( \frac{\partial \psi}{\partial t} \big)^{2} \bigg] $$

The Attempt at a Solution


i) Work out the partial derivatives of ## \psi(x,t) ##
Let $$ z_{0} =x+vt , z_{1}=x-vt $$

$$ \implies \psi(x,t) = f(z_{0})+f(z_{1}) $$
$$ \frac{\partial \psi}{\partial x} = f'(z_{0})+f'(z_{1}) $$
$$ \frac{\partial \psi}{\partial t} = v[f'(z_{0}) -f'(z_{1})] $$

ii) If the kinetic and potential energy densities are equal it implies:

$$ v^{2} \big(\frac{\partial \psi}{\partial x} \big)^{2} = \big( \frac{\partial \psi}{\partial t} \big)^{2} $$

iii) So substitute the values from i) into this, get:

$$ [f'(z_{0})+f'(z_{1})]^{2} = [f'(z_{0})-f'(z_{1})]^{2} $$

Which is not, in general true, therefore proved?

But I'm not sure I used the correct form for the equation of the stationary wave, or is this still acceptable?

Thanks!
 
Physics news on Phys.org
I think the equation you used that is the general solution for the wave equation. In my opinion, the form of the standing wave is give as follows
Ψ(x,t)=g(x)f(t)
 
  • Like
Likes bananabandana
Yes, but a stationary wave is by definition formed from two traveling waves moving in opposite directions which means it can then be rewritten in the form
that you suggest with the time and space separated?
Or is that not right?
 
bananabandana said:
Yes, but a stationary wave is by definition formed from two traveling waves moving in opposite directions
No, the definition is as Vipho posted. It is a matter of deduction that two traveling waves of the same amplitude, frequency and speed moving in opposite directions, and satisfying the wave equation, form a standing wave.
 
  • Like
Likes bananabandana
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Back
Top