- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
In $C^1[0,1]$ calculate the distances between the functions $y_1(x)=0$ and $y_2(x)=\frac{1}{100} \sin(1000x)$ in respect to the weak and strong norm.That's what I have tried:Weak norm:
$||y_1-y_2||_w=\max_{0 \leq x \leq 1} |y_1(x)-y_2(x)|+ \max_{0 \leq x \leq 1} |y_1'(x)-y_2'(x) | \\=\max_{0 \leq x \leq 1} \left |0-\frac{1}{100} \sin(1000x) \right|+ \max_{0 \leq x \leq 1} \left |\frac{1000}{100} \cos(1000x) \right|= \frac{1}{100}+10=\frac{1001}{100}$
Strong norm:
$||y_1-y_2||_M= \max_{0 \leq x \leq 1} |y_1(x)-y_2(x)|=\max_{0 \leq x \leq 1} \left |y_1(x)-y_2(x) \right|= \\=\max_{0 \leq x \leq 1} \left |0-\frac{1}{100} \sin(1000x) \right|= \frac{1}{100} \max_{0 \leq x \leq 1} |\sin(1000x)|= \frac{1}{100}$
Could you tell me if that what I have tried is right? (Thinking)
In $C^1[0,1]$ calculate the distances between the functions $y_1(x)=0$ and $y_2(x)=\frac{1}{100} \sin(1000x)$ in respect to the weak and strong norm.That's what I have tried:Weak norm:
$||y_1-y_2||_w=\max_{0 \leq x \leq 1} |y_1(x)-y_2(x)|+ \max_{0 \leq x \leq 1} |y_1'(x)-y_2'(x) | \\=\max_{0 \leq x \leq 1} \left |0-\frac{1}{100} \sin(1000x) \right|+ \max_{0 \leq x \leq 1} \left |\frac{1000}{100} \cos(1000x) \right|= \frac{1}{100}+10=\frac{1001}{100}$
Strong norm:
$||y_1-y_2||_M= \max_{0 \leq x \leq 1} |y_1(x)-y_2(x)|=\max_{0 \leq x \leq 1} \left |y_1(x)-y_2(x) \right|= \\=\max_{0 \leq x \leq 1} \left |0-\frac{1}{100} \sin(1000x) \right|= \frac{1}{100} \max_{0 \leq x \leq 1} |\sin(1000x)|= \frac{1}{100}$
Could you tell me if that what I have tried is right? (Thinking)