[ASK] Mathematical Induction: Prove 7^n-2^n is divisible by 5.

AI Thread Summary
The discussion focuses on proving that \(7^n - 2^n\) is divisible by 5 using mathematical induction. The initial steps confirm the base case for \(n = 1\) and assume the statement holds for \(n = k\). A mistake is identified in the transition to \(n = k + 1\), where the correct expression reveals that \(12 \cdot 2^k\) is not divisible by 5. Instead, a simpler method involving the difference of two terms with the same power is suggested, although participants note that this approach isn't part of the school curriculum. Ultimately, the conversation emphasizes the importance of learning efficient proof techniques.
Monoxdifly
MHB
Messages
288
Reaction score
0
Prove by mathematical induction that $$7^n-2^n$$ is divisible by 5.What I've done so far:For n = 1

$$7^1-2^1=7-2=5$$ (true that it is divisible by 5)

For n = k

$$7^k-2^k=5a$$ (assumed to be true that it is divisible by 5)

For n = k + 1

$$7^{k+1}-2^{k+1}=7^k\cdot7-2^k\cdot2=7(7^k-2^k)+12\cdot2^k=7(5a)+12\cdot2^k$$

This is where the problem lies. How can I show that $$12\cdot2^k$$ is divisible by 5?
 
Mathematics news on Phys.org
Monoxdifly said:
Prove by mathematical induction that $$7^n-2^n$$ is divisible by 5.What I've done so far:For n = 1

$$7^1-2^1=7-2=5$$ (true that it is divisible by 5)

For n = k

$$7^k-2^k=5a$$ (assumed to be true that it is divisible by 5)

For n = k + 1

$$7^{k+1}-2^{k+1}=7^k\cdot7-2^k\cdot2=7(7^k-2^k)+12\cdot2^k=7(5a)+12\cdot2^k$$

This is where the problem lies. How can I show that $$12\cdot2^k$$ is divisible by 5?
Hi Monoxdifly,

$12\cdot2^k$ is certainly not divisible by $5$ (look at the prime factors).

You made a mistake in your calculation: I get:
$$
7^k\cdot7 - 2^k\cdot2 = 7(7^k-2^k) + 5\cdot2^k
$$
and this should clear things up.
 
Ah, I see. Thank you very much!
 
It seems a bit overkill to use Induction, when there's a simple rule for the Difference of Two Terms With the Same Power...

$\displaystyle \begin{align*} a^n - b^n \equiv \left( a - b \right) \sum_{r = 0}^{n - 1}{ a^{n - 1 - r}\,b^r } \end{align*}$

so in your case the factor would be (7 - 2) which equals 5.
 
Prove It said:
It seems a bit overkill to use Induction, when there's a simple rule for the Difference of Two Terms With the Same Power...

$\displaystyle \begin{align*} a^n - b^n \equiv \left( a - b \right) \sum_{r = 0}^{n - 1}{ a^{n - 1 - r}\,b^r } \end{align*}$

so in your case the factor would be (7 - 2) which equals 5.

Well, the school curriculum doesn't teach this rule, so yes, we were supposed to solve it with the "overkill" method.
 
Monoxdifly said:
Well, the school curriculum doesn't teach this rule, so yes, we were supposed to solve it with the "overkill" method.

Then you can consider it as something new that you have learnt. The most concise method of proof is always the best.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top