- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
Basic feasible solution
$$\max (c_1 x_1+ \dots + c_n x_n) \\ Ax=b, x=(x_1, \dots , x_n) , b=(b_1, \dots, b_m) \\ x_i \geq 0, i=1, \dots, n , b_j \geq 0, j=1,\dots, m \\ \\ A=\begin{pmatrix}
a_{11} & a_{12} & \dots & a_{1n} \\
a_{21} & a_{22} & \dots & a_{2n} \\
\dots & & & & \\
\dots & & & & \\
a_{m1} & a_{m2} &\dots &a_{mn}
\end{pmatrix} \\ \\ P_1=\begin{bmatrix}
a_{11}\\
\dots\\
\dots\\
a_{m1}\\
\end{bmatrix}, \dots, P_n=\begin{bmatrix}
a_{1n}\\
\dots\\
\dots\\
a_{mn}\\
\end{bmatrix}$$
Then the equation $Ax=b$ can be equivalently written as $P_1 x_1+ \dots+ P_n x_n= \overline{b}, \overline{b}=\begin{bmatrix}
b_1\\
\dots\\
\dots\\
b_m\\
\end{bmatrix}$(at most $m$ lineraly independent columns)Definition:
If $x \in F \subset \mathbb{R}^n, x=(x_1, \dots, x_n)$ and the non-zero coordinates of $x$ correspond to linearly independent columns of the matrix $A$ then $x$ is called basic feasible solution.
For example if $x=(x_1, x_2, \dots, x_{m-1},0,0,0, \dots, 0) \in F$ and the columns that correspond to the non-zero coordinates, i.e. $P_1, \dots, P_{n-1}$ are linearly independent then $x$ is a basic feasible solution.Could you explain me the definition of the basic feasible solution and also the example? (Thinking)
Basic feasible solution
$$\max (c_1 x_1+ \dots + c_n x_n) \\ Ax=b, x=(x_1, \dots , x_n) , b=(b_1, \dots, b_m) \\ x_i \geq 0, i=1, \dots, n , b_j \geq 0, j=1,\dots, m \\ \\ A=\begin{pmatrix}
a_{11} & a_{12} & \dots & a_{1n} \\
a_{21} & a_{22} & \dots & a_{2n} \\
\dots & & & & \\
\dots & & & & \\
a_{m1} & a_{m2} &\dots &a_{mn}
\end{pmatrix} \\ \\ P_1=\begin{bmatrix}
a_{11}\\
\dots\\
\dots\\
a_{m1}\\
\end{bmatrix}, \dots, P_n=\begin{bmatrix}
a_{1n}\\
\dots\\
\dots\\
a_{mn}\\
\end{bmatrix}$$
Then the equation $Ax=b$ can be equivalently written as $P_1 x_1+ \dots+ P_n x_n= \overline{b}, \overline{b}=\begin{bmatrix}
b_1\\
\dots\\
\dots\\
b_m\\
\end{bmatrix}$(at most $m$ lineraly independent columns)Definition:
If $x \in F \subset \mathbb{R}^n, x=(x_1, \dots, x_n)$ and the non-zero coordinates of $x$ correspond to linearly independent columns of the matrix $A$ then $x$ is called basic feasible solution.
For example if $x=(x_1, x_2, \dots, x_{m-1},0,0,0, \dots, 0) \in F$ and the columns that correspond to the non-zero coordinates, i.e. $P_1, \dots, P_{n-1}$ are linearly independent then $x$ is a basic feasible solution.Could you explain me the definition of the basic feasible solution and also the example? (Thinking)