Basic geometry question re isosceles triangles

  • Thread starter Thread starter michaelamarti
  • Start date Start date
  • Tags Tags
    Geometry Triangles
AI Thread Summary
The discussion revolves around the use of the small angle approximation in deriving the differential area element in polar coordinates, specifically in the context of isosceles triangles. The author of "Mathematical Methods for Scientists and Engineers" claims the base of the triangle is rΔθ, while the questioner suggests it should be r(sin(Δθ)). The responses clarify that the approximation sin(Δθ) ≈ Δθ is valid for small angles, leading to the conclusion that rΔθ is an acceptable simplification. Additionally, the discussion touches on the geometric interpretation of the area as part of a circular sector, where the arc length is also expressed as rΔθ. The conversation highlights the application of linear approximations in integration theory, emphasizing their accuracy as the partition becomes finer.
michaelamarti
Messages
3
Reaction score
0
I am reading "Mathematical Methods for Scientists and Engineers" by Donald McQuarrie. In his discussion of polar coordinates, he uses a geometric argument to derive the differential area element, which is of course rdrdθ. He shows an isosceles triangle whose two equal sides are r, and the angle that they make at the top of the triangle is delta(theta), where delta(theta) is small. From this he says it follows that the base of the triangle is equal to
r(delta)(theta).
However, I can not find this in my geometry book. Shouldn't the base be something like
r(sin)(delta(theta))?
I also ran into this same problem in an astrophysics book where the author used the very same argument for deriving the formula for the distance to a star by determining the parallax angle.
In both cases, are the authors using the "small angle approximation" that sin(theta) = theta?
Sorry to ask such a basic geometry question. I'm 61 years old, and I don't remember my high school geometry that well.
 
Mathematics news on Phys.org
Yes, they are using the small angle approximation that you refer to. Actually, the exact value would be 2rsin(delta/2), which comes out to r *delta using that approximation. These linear approximations are valid in integration theory because of the nature of the integral. It is defined as a limit of a sum as you partition the region of integration into small pieces. So on each small piece, the linear approximation is quite accurate. In the limit, (as the partition of the region gets finer and finer) the linear approximation is exactly correct.
 
michaelamarti said:
I am reading "Mathematical Methods for Scientists and Engineers" by Donald McQuarrie. In his discussion of polar coordinates, he uses a geometric argument to derive the differential area element, which is of course rdrdθ. He shows an isosceles triangle whose two equal sides are r, and the angle that they make at the top of the triangle is delta(theta), where delta(theta) is small. From this he says it follows that the base of the triangle is equal to
r(delta)(theta).
However, I can not find this in my geometry book. Shouldn't the base be something like
r(sin)(delta(theta))?
What you have written doesn't make much sense - sin by itself is as meaningful as √ by itself.

I don't have the book you cite, but I'm going to guess that he's approximating the area of part of a circular sector. This region is four-sided, with two of the sides being curved.

If you take what you're calling an isosceles triangle (actually it's a sector of a circle), and extend the two rays by Δr, you get the four-sided figure. It's roughly a rectangle, where one dimension is Δr and the other is rΔθ. If you multiply those, you get rΔθΔr, which is the same as rΔrΔθ.

The part that might be confusing you is the rΔθ. This is the length of the arc of a circle of radius r, that is subtended by an angle of measure Δθ. If the circle's radius is 1, the arc length will be 1Δθ or Δθ. If the circle's radius is 2, the arc length will be 2Δθ. In general, if the radius is r, the arc length is rΔθ.
michaelamarti said:
I also ran into this same problem in an astrophysics book where the author used the very same argument for deriving the formula for the distance to a star by determining the parallax angle.
In both cases, are the authors using the "small angle approximation" that sin(theta) = theta?
Probably.
michaelamarti said:
Sorry to ask such a basic geometry question. I'm 61 years old, and I don't remember my high school geometry that well.
It might not have been covered. When I took geometry (a few years before you did), most of the time we studied triangles, and didn't do much with other geometric figures.
 
Thank you.
Holiday Greetings!
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top