- #1
BernieM
- 281
- 6
In compression of information, once any patterns have been 'condensed' as much as is possible, the information appears entirely random. Any further compression produces loss of information and the quantity of information required to encode it is increased.
In one theory it is supposed that all the mass and energy in the universe will eventually collapse back on itself and eventually get so dense that it will again make another big bang. If so the following question comes to mind:
There is information at the time of the big bang, such as the information of the conditions of the event itself (which I would assume would be maximum possible theoretical density for the information at the moment of the big bang but I have no proof of this,) and after the expansion, further information is able to be stored, as the universe expands (essentially decompression of the information.)
As the universe progresses in time, and eventually again reaches that point of a big bang (given that this will happen) you now have all of the information from the initial big bang, and the information from the entire period of time between the two big bangs to contend with if you will again compress it.
Does the relative increase of the information that must now be compressed, now dictate how dense the information can be packed when it creates a second big bang? Since there is now more information, would it prevent a duplicate of the first big bang from happening, the second big bang being lesser in magnitude than the first?
Or do the laws of physics make the second big bang occur at the same densities of the first one? What then of the additional information carried into the second big bang not contained in the first? Is it lost? Or is the second big bang's information, as well as all of the information gained between the initial big bang and the second one, actually contained in the initial big bang?
It is supposedly theoretically possible to determine exactly what will happen (or what did happen,) at any or all points in the universe (or events) if one knows all the particles and their energies and directions, etc., (all the information,) if one had a powerful enough computer to calculate it. So, was every event that occurred subsequent to the initial big bang already contained in the big bang itself? It seems one merely only need extrapolate the data from it after uncompressing it. Isn't that what the universe is doing now in essence? Uncompressing all the data contained in the big bang?
It seems to me that at the moment of the big bang, all the information that will ever occur must be present. This then would also contain all future big bangs (if in fact they will occur) and any information that has been gained in the interim. A third big bang? Fourth? That too would have to be included in the first. So as the number of possible big bangs the universe might undergo increases, the total information contained in the first then also increases as well.
So as one approaches the magic value of energy density, and certainty of a big bang is 100%, at that moment, if there will be future big bangs, all of that information must then also be forced into the already compressed information present, further increasing the total information, information that was not present until certainty of a big bang was achieved. And if collapse into another big bang would result later, even further increasing the information density, etc. It seems it would reach infinite information requiring to be compressed into that same initial energy package. If not why not?
So in short, I guess the question is, is information lost in a big bang, theoretically, or do we fall back on the 'we don't know because it breaks all the laws of physics.' And is all future information contained as well. Is it infinite information or simply an algorithm that yields an infinite sequence, that there is no additional information required to be stored?
In one theory it is supposed that all the mass and energy in the universe will eventually collapse back on itself and eventually get so dense that it will again make another big bang. If so the following question comes to mind:
There is information at the time of the big bang, such as the information of the conditions of the event itself (which I would assume would be maximum possible theoretical density for the information at the moment of the big bang but I have no proof of this,) and after the expansion, further information is able to be stored, as the universe expands (essentially decompression of the information.)
As the universe progresses in time, and eventually again reaches that point of a big bang (given that this will happen) you now have all of the information from the initial big bang, and the information from the entire period of time between the two big bangs to contend with if you will again compress it.
Does the relative increase of the information that must now be compressed, now dictate how dense the information can be packed when it creates a second big bang? Since there is now more information, would it prevent a duplicate of the first big bang from happening, the second big bang being lesser in magnitude than the first?
Or do the laws of physics make the second big bang occur at the same densities of the first one? What then of the additional information carried into the second big bang not contained in the first? Is it lost? Or is the second big bang's information, as well as all of the information gained between the initial big bang and the second one, actually contained in the initial big bang?
It is supposedly theoretically possible to determine exactly what will happen (or what did happen,) at any or all points in the universe (or events) if one knows all the particles and their energies and directions, etc., (all the information,) if one had a powerful enough computer to calculate it. So, was every event that occurred subsequent to the initial big bang already contained in the big bang itself? It seems one merely only need extrapolate the data from it after uncompressing it. Isn't that what the universe is doing now in essence? Uncompressing all the data contained in the big bang?
It seems to me that at the moment of the big bang, all the information that will ever occur must be present. This then would also contain all future big bangs (if in fact they will occur) and any information that has been gained in the interim. A third big bang? Fourth? That too would have to be included in the first. So as the number of possible big bangs the universe might undergo increases, the total information contained in the first then also increases as well.
So as one approaches the magic value of energy density, and certainty of a big bang is 100%, at that moment, if there will be future big bangs, all of that information must then also be forced into the already compressed information present, further increasing the total information, information that was not present until certainty of a big bang was achieved. And if collapse into another big bang would result later, even further increasing the information density, etc. It seems it would reach infinite information requiring to be compressed into that same initial energy package. If not why not?
So in short, I guess the question is, is information lost in a big bang, theoretically, or do we fall back on the 'we don't know because it breaks all the laws of physics.' And is all future information contained as well. Is it infinite information or simply an algorithm that yields an infinite sequence, that there is no additional information required to be stored?