Big Robot- Lattice boom crane - calculating maximum stress

AI Thread Summary
To calculate the bending stress of a lattice boom crane, one must consider the effective length and material specifications for the tube cords and lattice dimensions, especially under a working load of 400 pounds with a safety factor of 7x. The first section can be treated as an 18-foot cantilever, while the second can be calculated independently at 8 feet. It's essential to apply the correct formulas for lattice configurations, which may differ from standard cantilever calculations due to the nature of axial loads and joint assumptions. While manual calculations are possible, they can be tedious; thus, a numerical approach like finite element analysis is recommended for more accurate results. Understanding the dynamics and literature on hoist and crane devices will further aid in the design process.
bigrobotworx
Messages
2
Reaction score
0
Hello brilliant engineers.

How to calculate the bending stress of a lattice boom crane design?

It’s clear how to calculate a single chord in a lattice box, at least as a cantilevered tube. However, when placed in a box lattice what is the proper approach?

I’m constructing this crane in conjunction with a big robot dragon. The “crane” is a telescoping tail that supports both riders and an aerial performer. The tail has two boom sections of 10 feet each, for an extended length of about 18 feet.

I’m attempting to determine the material specifications of the tube cords and lattice dimensions to operate the fully cantilevered working load, say 400 pounds, with a high safety factor (7x failure) to account for dynamic force and fabrication quality.

I believe the first 10 foot section can be calculated at 18 feet. Then the second section can be calculated at 8 feet independently.

Please help me understand the general approach. If there is a general rule between cords in a lattice configuration. And what formula to use, if it can be calculated manually.

I’m not an engineer. But can follow the math in https://www.physicsforums.com/threads/cantilever-beam-calculation.992690/

My eternal thanks and invitation to ride a big robot to any that can get me on the proper track!
 

Attachments

  • 42EEE2FB-8F29-4700-A59C-506A8A97F25F.jpeg
    42EEE2FB-8F29-4700-A59C-506A8A97F25F.jpeg
    37.4 KB · Views: 169
Engineering news on Phys.org
Truss structure like this one are calculated in a different manner (with assumptions that only axial loads are carried by members, joints are hinged and external forces act only at the joints). Maybe the literature about hoist and crane devices will be helpful.

However, manual calculation will be quite tedious in this case. It would be beat to use numerical approach (finite element analysis). Here’s a similar example:
https://abaqus-docs.mit.edu/2017/En...gargocrane.htm#simagsa-c-bmsexamplegargocrane
 
Thread 'Turbocharging carbureted petrol 2 stroke engines'
Hi everyone, online I ve seen some images about 2 stroke carbureted turbo (motorcycle derivation engine). Now.. In the past in this forum some members spoke about turbocharging 2 stroke but not in sufficient detail. The intake and the exhaust are open at the same time and there are no valves like a 4 stroke. But if you search online you can find carbureted 2stroke turbo sled or the Am6 turbo. The question is: Is really possible turbocharge a 2 stroke carburated(NOT EFI)petrol engine and...
I need some assistance with calculating hp requirements for moving a load. - The 4000lb load is resting on ball bearing rails so friction is effectively zero and will be covered by my added power contingencies. Load: 4000lbs Distance to travel: 10 meters. Time to Travel: 7.5 seconds Need to accelerate the load from a stop to a nominal speed then decelerate coming to a stop. My power delivery method will be a gearmotor driving a gear rack. - I suspect the pinion gear to be about 3-4in in...
Back
Top