- #1
minimario
- 95
- 2
Homework Statement
A small block of mass m = 0.50 kg is fired with an initial speed of v0 = 4.0 m/s along a horizontal section of frictionless track, as shown in the top portion of Figure P7.58. The block then moves along the frictionless, semicircular, vertical tracks of radius R = 1.5 m. (a) Determine the force exerted by the track on the block at points A and B. (b) The bottom of the track consists of a section (L = 0.40 m) with friction. Determine the coefficient of kinetic friction between the block and that portion of the bottom track if the block just makes it to point C on the first trip. (Hint: If the block just makes it to point C, the force of contact exerted by the track on the block at that point is zero.)
Homework Equations
## a_c = m v^2 / r ##, ## F = ma ##
The Attempt at a Solution
(a) We begin by using CoE with the level at B defined as 0. Right before sliding onto the track, the total energy is ## \frac{1}{2} m 4^2 + m g 3 = m(8+3g) ##
At point A, the total energy is ## \frac{1}{2} m v^2 + mg(1.5) = m(\frac{v^2}{2} + 1.5g) ##. Energy is conserved, so ## 2(8+3g-1.5g) = v^2 \Rightarrow v^2 = 45.4 ## (Assuming g = 9.8).
Since the only force at point A is the one causing the centripetal acceleration, the force of track on block is ## \frac{mv^2}{r} = 15.13 ## N.
At point B, the total energy is ## \frac{1}{2} mv^2 ##. Energy conserved, so ## 2 (8+3g) = v^2 = 74.8 ##. At the bottom, however, the weight of the object takes role, and net force = ## \frac{mv^2}{r} - mg = 20.03 ## N. (Not sure it's supposed to be + mg or -mg, but I think it should be mg. Any ideas on this would be appreciated)
Is this right? If so, I will proceed to post my part B solution. No answer attached with this one, so not sure.
Edit:
(b) At the top, normal force is 0, so mg is the only force contributing to the centripetal force. Therefore, ## mg = mv^2 / r \Rightarrow v^2 = 14.7 ##. Conservation of energy with the point at the bottom of the semicircle and point C gives ## \frac{1}{2} m 14.7 + 3mg = \frac{1}{2} mv^2 \Rightarrow v^2 = 73.5 ## at the bottom.
Now, by the Work-Energy theorem, the work done by friction is equal to the change in energy. Since no change in potentional energy, all change is in kinetic energy, so ## W_fric = 1/2*m*(74.8-73.5) = 0.325 ##. In addition, ## W = Fd##, so ##0.325 = 0.4F \Rightarrow F = 0.8125 ##. In addition, ##F = \mu * mg \Rightarrow \mu = 0.17 ##.
Is all of this correct, or did I make a mistake somewhere? (Again, can't find the same problem anywhere online)
Thanks!
-minimario
Last edited: