I Bose-Einstein statistics for μ>ε

AI Thread Summary
The Gibbs sum for a system with chemical potential μ greater than energy ε simplifies to Z ≈ [λ exp(-ε/τ)]^N, leading to an average particle number ⟨N⟩ equal to N. However, this model becomes ineffective as it suggests that for any parameter X, ⟨X⟩ approaches X_N, rendering the model practically useless. Additionally, the Bose-Einstein distribution indicates that f(ε) becomes negative when μ exceeds ε, which is physically unacceptable. The discussion highlights that for bosons, the lowest energy state ε_0 imposes an upper limit on the chemical potential, with the phenomenon of Bose-Einstein condensation occurring as μ approaches ε_0. These insights raise questions about the physical validity of the model under the condition μ > ε.
LightPhoton
Messages
42
Reaction score
3
TL;DR Summary
Flaws in Bose-Einstein statistics for μ>ε
The Gibbs sum is given by

$$Z=\sum[\lambda \exp(-\varepsilon/\tau)]^N$$

where ##\lambda\equiv\exp(\mu/\tau)##. Since we are assuming ##\mu>\varepsilon##, we take only the last term of the sum because all others can be neglected.

thus

$$Z\approx[\lambda \exp(-\varepsilon/\tau)]^N$$

Now

$$\langle N\rangle =\lambda\frac{\partial}{\partial\lambda}\ln Z=\lambda\frac{\partial}{\partial\lambda}(N\ln\lambda-N\varepsilon/\tau)=N$$


But in general, we see that for any parameter ##X##

$$\langle X\rangle=\sum X_N[\lambda \exp(-\varepsilon/\tau)]^N/Z\approx X_N$$

where ##X_N## is the value at ##N\rightarrow\infty##, thus making the whole model useless.

But is this the only flaw in taking ##\mu>\varepsilon##?

That is, for the usual Bose-Einstein distribution

$$f(\varepsilon)=\frac1{\exp[(\varepsilon-\mu)/\tau]-1}$$

we get ##f(\varepsilon)<0## for ##\mu>\varepsilon##, which is physically wrong.

Are any such "physical" conditions present for the above model?
 
Physics news on Phys.org
For bosons the energy ##\epsilon_0## of the lowest energy state sets an upper limit for the chemical potential. In case when the chemical potential ##\mu## approaches the lowest energy level ##\epsilon_0## from below (##\mu\rightarrow\epsilon_0##), the occupation of the lowest energy level diverges; this phenomenon is called the Bose-Einstein condensation.
 
  • Like
Likes Demystifier and pines-demon
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Scalar and vector potentials in Coulomb gauge Assume Coulomb gauge so that $$\nabla \cdot \mathbf{A}=0.\tag{1}$$ The scalar potential ##\phi## is described by Poisson's equation $$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}\tag{2}$$ which has the instantaneous general solution given by $$\phi(\mathbf{r},t)=\frac{1}{4\pi\varepsilon_0}\int \frac{\rho(\mathbf{r}',t)}{|\mathbf{r}-\mathbf{r}'|}d^3r'.\tag{3}$$ In Coulomb gauge the vector potential ##\mathbf{A}## is given by...
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (First part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8 and stuck at some statements. It's little bit confused. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. Solution : The surface bound charge on the ##xy## plane is of opposite sign to ##q##, so the force will be...
Back
Top