Bounds of Integration for Random Oriented particle

relskhan
Messages
5
Reaction score
0
In the Stoner-Wohlfarth model, a uniaxial, non-interacting particle is cooled to very low temperature with no exposure to an external field. Therefore, the orientation of each particle is random, if you have a group of particles. In their paper, they integrate such that:
\langle \cos (\Theta )\rangle =\int_0^{\frac{\pi }{2}} \sin (\Theta ) \cos (\Theta ) \, d\Theta

I am having a hard time understanding why they only integrate from 0 to pi over two, instead of 0 to pi. Can anyone shine any enlightenment on this?
 

Attachments

  • Picture1.png
    Picture1.png
    8.6 KB · Views: 425
Physics news on Phys.org
A copy of the paper can be found at http://spin.nanophys.kth.se/spin/stoner-wohlfarth.pdf There's a lot of discussion around Fig. 4 where they talk about how the symmetries of the problem allow them to reproduce the solutions everywhere in parameter space from the region ##0 \leq \theta,\phi \leq \pi/2##.
 
  • Like
Likes relskhan
fzero said:
A copy of the paper can be found at http://spin.nanophys.kth.se/spin/stoner-wohlfarth.pdf There's a lot of discussion around Fig. 4 where they talk about how the symmetries of the problem allow them to reproduce the solutions everywhere in parameter space from the region ##0 \leq \theta,\phi \leq \pi/2##.

That helped me tremendously - thank you!
 
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Back
Top