MHB Bridge Hands: 5/6/2 Card Combination

  • Thread starter Thread starter Raerin
  • Start date Start date
  • Tags Tags
    Combination
AI Thread Summary
A bridge hand consists of 13 cards, and the discussion revolves around calculating the number of hands with specific card distributions: 5 cards of one suit, 6 of another, and 2 of a third. The initial calculation for a specific combination of suits yields 172,262,376 hands. However, to generalize this for any combination of suits, one must account for the permutations of choosing 3 suits from 4, leading to a revised total of 4,134,297,024 possible hands. The conversation highlights the importance of distinguishing between combinations and permutations in this context. The final formula incorporates both the suit selection and the distribution of cards among those suits.
Raerin
Messages
46
Reaction score
0
A bridge hand consists of 13 cards. How many bridge hands include 5 cards of one suit, 6 cards of a second suit and 2 cards of a third suit?
 
Mathematics news on Phys.org
What if the question asked instead:

How many bridge hands include 5 cards of hearts, 6 cards of spades and 2 cards of diamonds?

Wold you be able answer that?
 
MarkFL said:
What if the question asked instead:

How many bridge hands include 5 cards of hearts, 6 cards of spades and 2 cards of diamonds?

Wold you be able answer that?

13C5 * 13C6 * 13C2 = 172,262,376

If my question is the same as this one then my textbook's answer key is wrong. The textbook says the answer is 4 xxx, xxx, xxx
 
Raerin said:
13C5 * 13C6 * 13C2?

If my question is the same as this one then my textbook's answer key is wrong.

Yes, good! :D That is correct, but this is for one specific combination of suits only.

Now you want to make it general. You want to multiply this by the number of ways to choose 3 suits from 4.
 
MarkFL said:
Yes, good! :D That is correct, but this is for one specific combination of suits only.

Now you want to make it general. You want to multiply this by the number of ways to choose 3 suits from 4.

I realized after I left that we need to find the permutations, not the combinations regarding the four suits, since order matters in this case because there are a different number of each suit. Hence, the number $N$ of the described bridge hands is:

$$N=\frac{4!}{(4-3)!}\cdot{13 \choose 5}\cdot{13 \choose 6}\cdot{13 \choose 2}=4134297024$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top