Calculate Crumple Zone Rigidty?

  • Thread starter Thread starter AJ22
  • Start date Start date
AI Thread Summary
The discussion centers on calculating the rigidity of a vehicle's crumple zone using kinetic energy and force equations. The user calculates the initial kinetic energy from a collision and applies the equation FcosxΔd to determine the force, questioning the angle used in the calculation. They conclude that the angle is 180 degrees, leading to a calculated force of 691 kN, which they equate to crumple zone rigidity. There is uncertainty about whether this theoretical calculation aligns with practical measurements, suggesting that real-world rigidity might be assessed using a hydraulic ram. The conversation highlights both theoretical and practical approaches to understanding crumple zone rigidity.
AJ22
Messages
2
Reaction score
0
Homework Statement
Given the change in kinetic energy and distance, find the constant force needed in the crumple zone to stop the vehicle.
Relevant Equations
Work Energy Theorem: W = ΔEk
W = FcosxΔd
The vehicle comes to a stop after the collision so my kinetic energy is equal to (2000kg)(22m/s)2 / 2.
(Ekfinal -Ekinital)
I used the equation FcosxΔd = ΔEk. Knowing that the kinetic energy is -484000J and the length of the crumple zone is 0.70m, I can substitute those values into the equation.
Fcosx(0.70) = -484000.
My question is what would be the angle in the equation of W = FcosxΔd. During a collision the force from a wall acts in the opposite direction from the force of the crumple zone? So the angle is cos180 degrees = -1. Is this right?
So the constant force would then be F = -484000/-0.70 = 691Kn?
That means this number is also the crumple zone rigidity.
 
Last edited:
Physics news on Phys.org
All looks good.
 
Is that how crumple zone rigidity is calculated??
 
AJ22 said:
Is that how crumple zone rigidity is calculated??
In practice? I don’t know. It might be measured simply by squeezing it with a hydraulic ram.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top