- #1
beyondlight
- 65
- 0
Homework Statement
Calculate gain (u_o/u_i) for a differential amplifier with symmetric output. Both transistors have the same transconductance gm. Transistor output resistance r_0 is neglected here.
circuit: http://sv.tinypic.com/view.php?pic=14cea8p&s=8#.VSf7Evl_vxM
Homework Equations
Calculate gain A = u_o/u_i
The Attempt at a Solution
We rewrite the circuit to small-signal.
Voltage sources +/- E are set to zero.
I also split the source resistance Rs, into two parts so that we can divide the differentiator between a left and right side.
[tex]v_{gs1} = u_{i}-g_{m}v_{gs1}\frac{R_{s}}{2} [/tex]
[tex]v_{gs1} = \frac{u_{i}}{1+g_{m}\frac{R_{s}}{2}} [/tex][tex]v_{gs2} = 0 - g_{m}v_{gs2}\frac{R_{s}}{2} [/tex]
[tex]v_{gs2}(1 + g_{m}\frac{R_{s}}{2}) = 0 [/tex]
[tex]v_{gs2} = 0 [/tex]
[tex]u_{o} = v_{o1}-v_{o2}[/tex]
[tex]v_{o1} = -R_{D1}g_{m}v_{gs1} [/tex]
[tex]v_{o2} = -R_{D2}g_{m}v_{gs2} [/tex]
[tex]u_{o} = -R_{D1}g_{m}v_{gs1}+R_{D2}g_{m}v_{gs2} = -R_{D1}g_{m}v_{gs1} [/tex]
[tex]u_{o} = -R_{D1}g_{m}(\frac{u_{i}}{1+g_{m}\frac{R_{s}}{2}} ) [/tex]
[tex]\frac{u_{o}}{u_{i}} = \frac{ -R_{D1}g_{m}}{1+g_{m}\frac{R_{s}}{2}} = \frac{ -(R_{D}-\frac{\Delta R}{2})g_{m}}{1+g_{m}\frac{R_{s}}{2}}[/tex]The answer above is wrong, u_o/u_i = -gm*Rd is the correct one. What am I doing wrong?