MHB Calculate the integral ∫(tanx+cotx)(tanx/(1+cotx))^2dx.

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Integral
AI Thread Summary
The integral I = ∫(tan x + cot x)(tan x/(1 + cot x))^2 dx is discussed, with a preference for a solution that does not rely on online calculators. Participants share their approaches to solving the integral, emphasizing analytical methods. One user, Albert, provides a solution that is well-received by others in the discussion. The focus remains on deriving the integral step-by-step rather than using computational tools. Overall, the thread highlights collaborative problem-solving in calculus.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Calculate the integral:

\[I = \int_{0}^{\frac{\pi}{4}}\left(\tan x + \cot x \right)\left ( \frac{\tan x}{1 + \cot x} \right )^2dx.\]

A solution without the use of an online integral calculator is preferred. :cool:
 
Mathematics news on Phys.org
lfdahl said:
Calculate the integral:

\[I = \int_{0}^{\frac{\pi}{4}}\left(\tan x + \cot x \right)\left ( \frac{\tan x}{1 + \cot x} \right )^2dx.\]

A solution without the use of an online integral calculator is preferred. :cool:
$-2+3 ln2 $
 
Last edited:
Albert said:
-2+3 ln2 (hope no miscalculation)

My mistake! Your result is correct!
Please show your integration steps. Thankyou.
 
Last edited:
lfdahl said:
My mistake! Your result is correct!
Please show your integration steps. Thankyou.
my solution:
with transformation $y=tan(x),dy=sec^2(x)dx$
$$I = \int_{0}^{\dfrac{\pi}{4}}\left(\tan x + \cot x \right)\left ( \dfrac{\tan x}{1 + \cot x} \right )^2dx.$$
we have:
$$I=\int_{0}^{1}(\dfrac{1+y^2}{y})\times\dfrac {y^4}{(1+y)^2}\times \dfrac{1}{1+y^2}dy=\int_{0}^{1}\dfrac{y^3}{(1+y)^2}dy$$
$=(\dfrac{y^2}{2}-2y+3ln(1+y)+\dfrac{1}{1+y})\big|_{0}^{1}=-2+3 ln2$
 
Last edited:
Albert said:
my solution:
with transformation $y=tan(x),dy=sec^2(x)dx$
$$I = \int_{0}^{\dfrac{\pi}{4}}\left(\tan x + \cot x \right)\left ( \dfrac{\tan x}{1 + \cot x} \right )^2dx.$$
we have:
$$I=\int_{0}^{1}(\dfrac{1+y^2}{y})\times\dfrac {y^4}{(1+y)^2}\times \dfrac{1}{1+y^2}dy=\int_{0}^{1}\dfrac{y^3}{(1+y)^2}dy$$
$=(\dfrac{y^2}{2}-2y+3ln(1+y)+\dfrac{1}{1+y})\big|_{0}^{1}=-2+3 ln2$

Thanks, Albert! - for your participation - and a nice solution.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top