Calculating a Homopolar Generator's EMF

  • Thread starter Thread starter ElPimiento
  • Start date Start date
  • Tags Tags
    Emf Homopolar
AI Thread Summary
The discussion focuses on calculating the electromotive force (EMF) of a homopolar generator using the relationship between magnetic field, velocity, and charge. The initial approach involved analyzing the forces acting on a negative charge at the edge of the disk, leading to an expression for EMF as ΔV = ωBr²/2. Participants clarify that the differential form of EMF, d(emf) = Bv(r)dr, is essential for integrating over the radius of the disk. The integration confirms that the EMF can be expressed as ε = ωBR²/2, where R is the disk's radius. The conversation emphasizes the importance of understanding the relationship between variables in the context of electromagnetic theory.
ElPimiento
Messages
16
Reaction score
0

Homework Statement


Screen Shot 2016-04-14 at 1.21.10 PM.png
Screen Shot 2016-04-14 at 1.21.18 PM.png

Homework Equations


##\omega = v/r##
##q\vec v \times \vec B\ =\ \vec F_B##
##|\vec F|d\ =\ |\vec E|##
##q \Delta V\ =\ E##

The Attempt at a Solution


(So, my answer is twice and large as the correct answer. This is the second time this has happened on a question like this . . .)
Since a negative charge would collect on the outside of the disk I began by analyzing one negative charge and treated it in equilibrium on the edge of the disk,
$$\begin{align}
q\vec v \times \vec B- \frac{|\vec E|}{d}\ &=\ 0 \\
qvB \ &=\ \frac{q \Delta V}{r} \\
vBr \ &=\ \Delta V
\end{align}$$
And since ##v\ =\ \omega r##:
$$\begin{align}
(\omega r)Br \ &=\ \Delta V \\
\Delta V \ =\ \epsilon \ &\approx\ 48.3\ V
\end{align}$$
Any help would be wonderful c:
 
Physics news on Phys.org
Start with the differential form for emf:
d(emf) = Bv(r)dr
and show off your powers of integration! :-)
 
  • Like
Likes ElPimiento
I'm back tracking the work a little to make sure i understand where your getting that form of emf:
##\begin{align}
F_B - F_E \ &=\ 0 \\
F_B \ &=\ F_E\ =\ q|\vec E|\ =\ q\frac{d(\epsilon)}{dr} \\
vB\ =\ \omega r B\ &=\ \frac{d(emf)}{dr} \\
\int (\omega r B)dr\ &=\ \epsilon \\
\frac{\omega B r^2}{2} \ &=\ \epsilon\ \approx 24.1\ V
\end{align}##
thanks so much!
 
ElPimiento said:
I'm back tracking the work a little to make sure i understand where your getting that form of emf:
##\begin{align}
F_B - F_E \ &=\ 0 \\
F_B \ &=\ F_E\ =\ q|\vec E|\ =\ q\frac{d(\epsilon)}{dr} \\
vB\ =\ \omega r B\ &=\ \frac{d(emf)}{dr} \\
\int (\omega r B)dr\ &=\ \epsilon \\
\frac{\omega B r^2}{2} \ &=\ \epsilon\ \approx 24.1\ V
\end{align}##
thanks so much!
Looking good!

d(emf) = B(r) v(r) dr is just the generalized (differential) form of emf = Bvr. Just basic calculus. It allows B and/or v to be functions of r. If B and v are not functions of r then it's just Bvr. But in your case B = constant but v = v(r) so then
d(emf) = B v(r) dr = B ωr dr
and when integrated over r=0 to r= R you get emf = ωBR2/2
where R is the disk's radius.
 
Last edited:
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top