Calculating <E> & <E^2> with Eigenfunctions of Parity Operator

AI Thread Summary
The expectation value <E> is correctly calculated as (a1n1 + a2n2 + a3n3 + a4n4) / (n1 + n2 + n3 + n4). The expectation value <E^2> can be calculated using the formula <E^2> = (a1^2 n1 + a2^2 n2 + a3^2 n3 + a4^2 n4) / (n1 + n2 + n3 + n4). For the parity operator, only the function f(x) = Ψ(x)x^2Ψ(x) with Ψ(x) antisymmetric is identified as an eigenfunction. The other functions either yield odd powers or do not meet the criteria for eigenfunctions. The discussion emphasizes collaborative problem-solving rather than providing complete solutions.
cuegirl60
Messages
2
Reaction score
0
Q1
energy no. of times measured
a1 n1
a2 n2
a3 n3
a4 n4

expectation value <E> = (a1n1+a2n2+a3n3+a4n4) / (n1+n2+n3+n4)
is this correct?

Also, how do you caluculate expectation value <E^2> ?
i.e. <E squared>

Q2
Identify if the following functions are eigenfunctions of the parity operator.

a) f(z) = z(a-z)(z+b), where a,b are real numbers
b) f(x) = Ψ(x)xΨ(x), where Ψ(x) is antisymmetric about the origin.
c) same f(x) in b), but where Ψ(x) is symmetric about the origin.
d) f(x) = Ψ(x)x^2Ψ(x) where Ψ(x) is antisymmetric about the origin. x^2 means x squared.
 
Physics news on Phys.org
cuegirl60 said:
Q1
energy no. of times measured
a1 n1
a2 n2
a3 n3
a4 n4

expectation value <E> = (a1n1+a2n2+a3n3+a4n4) / (n1+n2+n3+n4)
is this correct?

Also, how do you caluculate expectation value <E^2> ?
i.e. <E squared>

How did you come up with the first answer ? Follow the same line of thought and you'll find the answer to <E^2>.

cuegirl60 said:
Q2
Identify if the following functions are eigenfunctions of the parity operator.

a) f(z) = z(a-z)(z+b), where a,b are real numbers
b) f(x) = Ψ(x)xΨ(x), where Ψ(x) is antisymmetric about the origin.
c) same f(x) in b), but where Ψ(x) is symmetric about the origin.
d) f(x) = Ψ(x)x^2Ψ(x) where Ψ(x) is antisymmetric about the origin. x^2 means x squared.

Post ideas and work, people here want to help, not supply full solutions to your problems.

Daniel.
 
so i said <E> = (a1n1+a2n2+a3n3+a4n4) / (n1+n2+n3+n4)

and if this was correct,

<E^2> = (a1^2 n1 + a2^2 n2 + a3^2 n3 + a4^2 n4) / (n1+n2+n3+n4)

is this correct??

Q2, my thought was:
only d was eigenfunctions of the parity operator.

b,c always give function to the power of odd value, a i just worked out can not be...
 
cuegirl60 said:
so i said <E> = (a1n1+a2n2+a3n3+a4n4) / (n1+n2+n3+n4)

and if this was correct,

<E^2> = (a1^2 n1 + a2^2 n2 + a3^2 n3 + a4^2 n4) / (n1+n2+n3+n4)

is this correct??

Q2, my thought was:
only d was eigenfunctions of the parity operator.

b,c always give function to the power of odd value, a i just worked out can not be...

Both of these look good.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top