MHB Calculating Fourier Series of $f(\theta)$ on $[\pi, -\pi]$

Dustinsfl
Messages
2,217
Reaction score
5
Calculate the Fourier series of the function $f$ defined on the interval $[\pi, -\pi]$ by
$$
f(\theta) =
\begin{cases} 1 & \text{if} \ 0\leq\theta\leq\pi\\
-1 & \text{if} \ -\pi < \theta < 0
\end{cases}.
$$
$f$ is periodic with period $2\pi$ and odd since $f$ is symmetric about the origin.
So $f(-\theta) = -f(\theta)$.
Let $f(\theta) = \sum\limits_{n = -\infty}^{\infty}a_ne^{in\theta}$.
Then $f(-\theta) = \sum\limits_{n = -\infty}^{\infty}a_ne^{-in\theta} = \cdots + a_{-2}e^{2i\theta} + a_{-1}e^{i\theta} + a_0 + a_{1}e^{-i\theta} + a_{2}e^{-2i\theta}+\cdots$
$-f(\theta) = \sum\limits_{n = -\infty}^{\infty}a_ne^{-in\theta} = \cdots - a_{-2}e^{-2i\theta} - a_{-1}e^{-i\theta} - a_0 - a_{1}e^{i\theta} - a_{2}e^{2i\theta}-\cdots$

$a_0 = -a_0 = 0$

I have solved many Fourier coefficients but I can't think today.

What do I need to do next?
 
Physics news on Phys.org
$$
a_n = \frac{1}{2\pi}\int_{-\pi}^{\pi}f(\theta)e^{-im\theta}d\theta
$$
Since my function is defined piecewise, would I write it as
$$
a_n = \frac{1}{2\pi}\left[\int_0^{\pi}e^{-im\theta}d\theta - \int_{-\pi}^0e^{-im\theta}d\theta\right]
$$
 
dwsmith said:
$$
a_n = \frac{1}{2\pi}\int_{-\pi}^{\pi}f(\theta)e^{-im\theta}d\theta
$$
Since my function is defined piecewise, would I write it as
$$
a_n = \frac{1}{2\pi}\left[\int_0^{\pi}e^{-im\theta}d\theta - \int_{-\pi}^0e^{-im\theta}d\theta\right]
$$
Yes. (Yes)

(But since this is an odd function, you might find it easier to use the real rather than the complex Fourier series. The cosine terms will all be zero and you will only have to deal with the sine terms. To evaluate them, do just what you are doing with the complex terms, writing them as the difference between the integrals on the intervals [0,1] and [-1,0].)
 
Opalg said:
Yes. (Yes)

(But since this is an odd function, you might find it easier to use the real rather than the complex Fourier series. The cosine terms will all be zero and you will only have to deal with the sine terms. To evaluate them, do just what you are doing with the complex terms, writing them as the difference between the integrals on the intervals [0,1] and [-1,0].)
When I solve, I have
$$
-\frac{1}{2\pi}\int_0^{\pi}\sin m\theta d\theta = \frac{1}{\pi m}
$$
and
$$
-\frac{1}{2\pi}\int_{-\pi}^0\sin m\theta d\theta = -\frac{1}{\pi m}
$$

I think the integral has to be
$$
-\frac{1}{\pi}\int_0^{\pi}\sin m\theta d\theta = \frac{2}{\pi m}
$$

Now what?
 
Last edited:
dwsmith said:
When I solve, I have
$$
-\frac{1}{2\pi}\int_0^{\pi}\sin m\theta d\theta = \frac{1}{\pi m}
$$
and
$$
-\frac{1}{2\pi}\int_{-\pi}^0\sin m\theta d\theta = -\frac{1}{\pi m}
$$

I think the integral has to be
$$
-\frac{1}{\pi}\int_0^{\pi}\sin m\theta d\theta = \frac{2}{\pi m}
$$

Now what?
Try doing those integrals again. $$\begin{aligned}\int_0^\pi\sin m\theta\,d\theta &=\Bigl[-\tfrac1m\cos m\theta\Bigr]_0^\pi \\ &= -\tfrac1m\bigl(\cos m\pi - \cos 0\bigr) \\ &= -\tfrac1m\bigl((-1)^m - 1\bigr) \\ &= \begin{cases}0 &\text{ (if $m$ is even),} \\2/m &\text{ (if $m$ is odd).}\end{cases} \end{aligned}$$

The integral from -1 to 0 is the same but with a minus sign. You should then find that the Fourier series for $f(\theta)$ is $$\sum_{k=0}^\infty\frac4{(2k+1)\pi}\sin(2k+1) \theta.$$
 
I posted this question on math-stackexchange but apparently I asked something stupid and I was downvoted. I still don't have an answer to my question so I hope someone in here can help me or at least explain me why I am asking something stupid. I started studying Complex Analysis and came upon the following theorem which is a direct consequence of the Cauchy-Goursat theorem: Let ##f:D\to\mathbb{C}## be an anlytic function over a simply connected region ##D##. If ##a## and ##z## are part of...
Back
Top