MHB Calculating Median in a Class with B, D, A, and C Scores: Findings and Solutions

  • Thread starter Thread starter Monoxdifly
  • Start date Start date
  • Tags Tags
    Median
AI Thread Summary
In the discussion about calculating the median of scores for students Budi, Doni, Adi, and Coki, it is established that Budi's score is greater than Doni's, and the sum of Adi's and Doni's scores exceeds that of Budi's and Coki's. The inequalities suggest that the scores can be arranged in two possible orders, but a definitive median cannot be calculated due to insufficient information. The analysis indicates that if C's score is between B and A or between D and B, the median would be the average of B and C or B and D, respectively. Ultimately, the median can be expressed as half of the sum of B and the maximum of C or D. It is concluded that determining an exact median value is not feasible with the given data.
Monoxdifly
MHB
Messages
288
Reaction score
0
In a class, Budi's score is greater than Doni's. The sum of Adi's and Doni's scores is greater than the sum of Budi's and Coki's scores. Meanwhile, Doni's score is greater than two times Budi's score substracted by Adi's score. Determine the median of those four students' scores.

All I know, was, by using their initials that:
B > D
A + D > B + C
D > 2B - A

And by using the second and third info I got that their score from lowest to highest is either C, D, B, A or D, B, C, A. However, I met a dead-end after that. Please someone help me.
 
Mathematics news on Phys.org
I sketched a number line ... $B>D$ is obvious. The last inequality states $B < \dfrac{A+D}{2}$, or $B$ is less than the average of $A$ and $D$, equal to the midpoint of segment $AD$.

Finally, the second inequality states $C < A+D-B$. Note the possible positions for $C$ represented by the open-ended blue ray in the diagram.

If $B < C< A$ or $D < C < B$, the the median of the four scores is $\dfrac{B+C}{2}$

If $C < D$, then the median is $\dfrac{B+D}{2}$
 
Yep. Put more concisely, the median is $\frac 12 (B+\max(C,D))$.
 
Thank you everyone who has helped me with this question. I have asked this question in 4 different forums including this one and all confirm that it is impossible to find the exact number of the median's value.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top