MHB Calculating Ratio of Determinants for $a,b$ Real Coefficients

AI Thread Summary
The discussion focuses on demonstrating that the ratio of determinants involving coefficients from the series expansion of the function $(x^2 + ax + b)^{-1}$ is independent of the index $k$. By comparing coefficients of $x^{k+2}$ and $x^{k+3}$ in the equation derived from the series, two simultaneous equations are established. Solving these equations leads to the expression for $b$ as the ratio of the determinants. The independence of $k$ is confirmed since both sides of the derived equation do not depend on $k$. This establishes the desired result regarding the ratio of determinants.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Let $a$ and $b$ be real coefficients ($b \ne 0$), and let $(x^2+ax+b)^{-1} = \sum_{k=0}^{\infty}c_kx^k$
for sufficiently small $|x|$.

Show, that the ratio of determinants:

$\begin{vmatrix} c_k & c_{k+1} \\ c_{k+1} & c_{k+2} \end{vmatrix} / \begin{vmatrix} c_{k+1} & c_{k+2} \\ c_{k+2} & c_{k+3} \end{vmatrix}$

- is independent of $k$.
 
Last edited:
Mathematics news on Phys.org
lfdahl said:
Let $a$ and $b$ be real coefficients ($b \ne 0$), and let $(x^2+ax+b)^{-1} = \sum_{k=0}^{\infty}c_kx^k$
for sufficiently small $|x|$.

Show, that the ratio of determinants:

$\begin{vmatrix} c_k & c_{k+1} \\ c_{k+1} & c_{k+2} \end{vmatrix} / \begin{vmatrix} c_{k+1} & c_{k+2} \\ c_{k+2} & c_{k+3} \end{vmatrix}$

- is independent of $k$.
[sp]If $$(x^2+ax+b)^{-1} = \sum_{k=0}^{\infty}c_kx^k$$ then $$1 = (x^2+ax+b)\sum_{k=0}^{\infty}c_kx^k$$. Compare the coefficients of $x^{k+2}$ and $x^{k+3}$ on both sides: $$\begin{aligned}c_k + ac_{k+1} + bc_{k+2} &= 0, \\ c_{k+1} + ac_{k+2} + bc_{k+3} &= 0.\end{aligned}$$ Solve those simultaneous equations for $a$ and $b$ to get $$b = \begin{vmatrix} c_k & c_{k+1} \\ c_{k+1} & c_{k+2} \end{vmatrix} \bigg/ \begin{vmatrix} c_{k+1} & c_{k+2} \\ c_{k+2} & c_{k+3} \end{vmatrix}.$$ Since the left side of that equation is independent of $k$ so is the right side.[/sp]
 
Opalg said:
[sp]If $$(x^2+ax+b)^{-1} = \sum_{k=0}^{\infty}c_kx^k$$ then $$1 = (x^2+ax+b)\sum_{k=0}^{\infty}c_kx^k$$. Compare the coefficients of $x^{k+2}$ and $x^{k+3}$ on both sides: $$\begin{aligned}c_k + ac_{k+1} + bc_{k+2} &= 0, \\ c_{k+1} + ac_{k+2} + bc_{k+3} &= 0.\end{aligned}$$ Solve those simultaneous equations for $a$ and $b$ to get $$b = \begin{vmatrix} c_k & c_{k+1} \\ c_{k+1} & c_{k+2} \end{vmatrix} \bigg/ \begin{vmatrix} c_{k+1} & c_{k+2} \\ c_{k+2} & c_{k+3} \end{vmatrix}.$$ Since the left side of that equation is independent of $k$ so is the right side.[/sp]
Thankyou for the correct answer, Opalg! - and for your participation!(Handshake)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Replies
6
Views
2K
Replies
1
Views
1K
Replies
3
Views
1K
Replies
8
Views
2K
Replies
12
Views
1K
Replies
15
Views
2K
Back
Top