- #1
lfdahl
Gold Member
MHB
- 749
- 0
Let $a$ and $b$ be real coefficients ($b \ne 0$), and let $(x^2+ax+b)^{-1} = \sum_{k=0}^{\infty}c_kx^k$
for sufficiently small $|x|$.
Show, that the ratio of determinants:
$\begin{vmatrix} c_k & c_{k+1} \\ c_{k+1} & c_{k+2} \end{vmatrix} / \begin{vmatrix} c_{k+1} & c_{k+2} \\ c_{k+2} & c_{k+3} \end{vmatrix}$
- is independent of $k$.
for sufficiently small $|x|$.
Show, that the ratio of determinants:
$\begin{vmatrix} c_k & c_{k+1} \\ c_{k+1} & c_{k+2} \end{vmatrix} / \begin{vmatrix} c_{k+1} & c_{k+2} \\ c_{k+2} & c_{k+3} \end{vmatrix}$
- is independent of $k$.
Last edited: