Calculating relative velocity of Crab Nebula

AI Thread Summary
The discussion focuses on calculating the relative velocity of the Crab Nebula using the Doppler formula. The initial calculation yielded a velocity of 3085.81 km/s, which was significantly higher than expected. A cosmologist advised using a modified formula that divides the result by two, leading to a more accurate velocity of 1542.90 km/s. This adjustment accounts for the difference between the approaching and receding filaments, with half the shift attributed to each. The participant expresses appreciation for the clarification, indicating a better understanding of the concept.
LavaLynne
Messages
7
Reaction score
0
I'm using the the Doppler formula to calculate the relative velocity between the approaching and receding filaments of the crab nebula: Δλ/λnaught = v/c Change in wavelength/ wavelength = velocity/ speed of light

I have reworked the formula as v= c(Δλ/λnaught)

When I plug in the values I get: 300,000 km/s (38.336 angstrom/ 3727 angstrom) = 3085.81

As this is nowhere near the velocity of the Crab's expansion I asked a cosmologist friend for help. He said that I should do the formula as: v= c(Δλ/λnaught) / 2

This gives me: 300,000 km/s (38.336 angstrom/ 3727 angstrom) /2 = 1542.90 km/s

Now this result is very close to the actual velocity of the expansion. What I'm wondering is...why am I dividing by two?

Keep in mind that I'm a mature student and this my first year of school in a very long time! Please go easy on me! :)
 
Astronomy news on Phys.org
You're looking at the difference between approaching and receding filaments. Half that difference is assigned to the shift resulting from approach, and half to the shift due to recession.
 
Thank you very much for that! That make quite a lot of sense! :)
 
Is a homemade radio telescope realistic? There seems to be a confluence of multiple technologies that makes the situation better than when I was a wee lad: software-defined radio (SDR), the easy availability of satellite dishes, surveillance drives, and fast CPUs. Let's take a step back - it is trivial to see the sun in radio. An old analog TV, a set of "rabbit ears" antenna, and you're good to go. Point the antenna at the sun (i.e. the ears are perpendicular to it) and there is...
3I/ATLAS, also known as C/2025 N1 (ATLAS) and formerly designated as A11pl3Z, is an iinterstellar comet. It was discovered by the Asteroid Terrestrial-impact Last Alert System (ATLAS) station at Río Hurtado, Chile on 1 July 2025. Note: it was mentioned (as A11pl3Z) by DaveE in a new member's introductory thread. https://www.physicsforums.com/threads/brian-cox-lead-me-here.1081670/post-7274146 https://earthsky.org/space/new-interstellar-object-candidate-heading-toward-the-sun-a11pl3z/ One...
Back
Top