Automotive Calculating the angular acceleration of a swivel seat

AI Thread Summary
The discussion focuses on calculating the angular acceleration and torque required for a swivel seat that rotates 90 degrees in 15 seconds. The inertia of the movable parts has been determined, and the next step involves calculating angular acceleration, with suggestions for using a whiplash effect as a reference. A proposed method includes using a computer chair with a lever arm to measure torque directly. The equations for linear motion under constant acceleration have equivalents for rotational motion, allowing for the calculation of angular acceleration based on displacement and time. Additional considerations include accounting for friction and the trapezoidal acceleration profile of the motors.
marellasunny
Messages
245
Reaction score
3
We have an automotive swivel seat that turns from the initial seating position to the final position outside the vehicle (90 degree swivel in 15 seconds). We would like to calculate the torque required for rotating the seat along with the person. We have calculated the inertia of the movable parts and are left now with the calculation for the angular acceleration variable.
T=I * alpha (assuming friction, gyroscopic effects to be negligible)

I have figured out a few ways. Please verify if I'm in the right path for figuring this out:
1. The whiplash effect from a vehicle crashing into the rear of the vehicle is 40 m/sec2. I could take the angular acceleration of the seat swivelling out as 1/10 th of this i.e. 4 m/sec2, assuming this to be in the comfortable for the passenger...??
2. I do not have a working prototype but I could use a computer chair attached to a lever arm of 400 mm radius such that it swivels 90 degrees. I would then use a dynamometer to measure the torque required directly at the swivelling centre.

Thank you
 
Engineering news on Phys.org
The equations for linear motion under constant acceleration all have equivalents for rotation under constant angular acceleration. You could assume it accelerates for 7.5 seconds over 45 degrees, then decelerates for 7.5 seconds over the remaining 45 degrees. Then you can calculate the angular acceleration/deceleration required using the equations of motion.

S=ut + 0.5at^2

Where S is the angular displacement in radians (45 degrees = pi/4 radians)
u is the initial angular velocity (0 radians per second).
a is the angular acceleration in radians per second per second
t is time in seconds (7.5)

Rearrange to get a.

The angular acceleration and the moment of inertia can then be used to calculate the torque required.
 
Angular acceleration of 0.034 rad/sec2 sounds about right for this application. I make the mistake of not considering the right acceleration time- just the 7.5 seconds, in fact the motors would accelerate, steady and decelerate in a trapezoidal fashion. This was very helpful.
 
  • Like
Likes CWatters
marellasunny said:
in fact the motors would accelerate, steady and decelerate in a trapezoidal fashion.

In which case you just need to decide the time over which the acceleration phase occurs.

You might also need to allow extra torque for friction, particularly static friction which is usually higher than kinetic friction. Might be necessary to measure it?
 
Here's a video by “driving 4 answers” who seems to me to be well versed on the details of Internal Combustion engines. The video does cover something that's a bit shrouded in 'conspiracy theory', and he touches on that, but of course for phys.org, I'm only interested in the actual science involved. He analyzes the claim of achieving 100 mpg with a 427 cubic inch V8 1970 Ford Galaxy in 1977. Only the fuel supply system was modified. I was surprised that he feels the claim could have been...
TL;DR Summary: Heard in the news about using sonar to locate the sub Hello : After the sinking of the ship near the Greek shores , carrying of alot of people , there was another accident that include 5 tourists and a submarine visiting the titanic , which went missing Some technical notes captured my attention, that there us few sonar devices are hearing sounds repeated every 30 seconds , but they are not able to locate the source Is it possible that the sound waves are reflecting from...
Back
Top