- #1
O_o
- 32
- 3
Homework Statement
-A bus is moving along an infinite route and has stops at n = 0, 1, 2, 3, ...
-The bus can hold up to B people
-The number of people waiting at stop n, Yn, is distributed Poisson(10) and is independent from the number waiting at all the other stops.
-At any given stop each passenger has probability p of getting off and the passengers are mutually independent.
-Assume after the passengers get off at stop n, everyone waiting at that stop gets on as long as there are spots remaining
[tex] \{X_n; n \geq 0\} [/tex] is a Markov Chain representing the number of passengers on the bus after it leaves stop n.1) What are the transition probabilities, pij?
2) What is [tex] E[X_n] [/tex] for n = 0, 1, 2, ..., 20 if p = 0.4 and B = 20
Homework Equations
The Attempt at a Solution
(1)
[tex]X_n = \min\{X_{n-1} - L_n + Y_n, B\}[/tex]
Where L_n ~ Binomial(X_{n-1}, p) is the number of people who got off at stop n
The transition probabilities need to be broken up into cases. For i > 0, j < i [tex] p_{i,j} = \sum_{k=i-j}^i {i \choose k} p^k(1-p)^{i-k} \left( \frac{10^{j-i+k} e^{-10}}{(j-i+k)!}\right)[/tex]
for i>0, B > j >= i [tex]
p_{i,j} = \sum_{k=0}^i {i \choose k} p^k(1-p)^{i-k} \left( \frac{10^{j-i+k} e^{-10}}{(j-i+k)!}\right)[/tex]
for i>=0 j = B[tex]
p_{i,j} = \sum_{k=0}^i {i \choose k} p^k(1-p)^{i-k} \left(\sum_{h=j-i+k}^{\infty}\frac{10^{h} e^{-10}}{(h)!}\right)[/tex]
(2)
I feel reasonably okay about question (1) although maybe it's completely wrong. My main concern was part 2. If I want to use [tex]X_n = \min\{X_{n-1} - L_n + Y_n, B\} [/tex] to find the expected value, I get this [tex] E[X_n] =\min\{E[X_{n-1}] - E[L_n] + E[Y_n], B\}[/tex]
which seems like it should be doable Except L_n ~ binomial (X_{n-1}, p) so the parameter is a random variable. Am I allowed to say[tex]E[L_n] = E[X_{n-1}]p[/tex]
We haven't learned anything about having random variables in sum boundaries so I'm a bit clueless. Thank you.
Last edited: