Calculation of matrix element for ##e^{+}e##-->##\mu^{+}\mu##

  • Thread starter Thread starter dark_matter_is_neat
  • Start date Start date
  • Tags Tags
    Quantum field theory
AI Thread Summary
The calculation of the matrix element for the process e⁺e⁻ → μ⁺μ⁻ involves two contributions, M1 and M2, derived from the polarization vectors. The contributions are defined as M1 = ϵ1ϵ3 + ϵ1ϵ4 and M2 = ϵ2ϵ3 + ϵ2ϵ4. However, the calculations yield M1 = M2 = 1, leading to |M|² = 2, which contradicts the expected result from linear polarization, |M|² = 1 + cos²θ. The discrepancy suggests an error in the calculation process that needs to be identified to align with the linear polarization outcome. This inconsistency highlights the importance of careful evaluation in quantum field theory calculations.
dark_matter_is_neat
Messages
34
Reaction score
1
Homework Statement
This is problem 5.4 from Schwartz's QFT and The Standard Model
It for me to calculate the matrix element of ##e^{+}e##-->##\mu^{+}mu## in the ultra relativistic limit in the center of mass frame using circular polarization instead of linear polarization which was done in section 5.3.
Relevant Equations
Setting the ##e^{+}e## axis as the z axis, the initial momentum vectors are:
p1 = (E, 0, 0, E), p2 = (E, 0, 0, -E)
The initial circular polarization vectors should be:
##\epsilon 1 = \frac{1}{\sqrt{2}}(0,1,i,0)## and ##\epsilon 2 = \frac{1}{\sqrt{2}}(0,1,-i,0)##
The final momentum vectors will be at some angle with respect to the z axis, so I will pick for these vectors to be rotated around the x axis by some angle ##\theta##.
So the final momentum vectors are:
p3 = E##(1, 0, sin\theta, cos\theta)## and p4 = E##(1, 0, -sin\theta, -cos\theta)##
The final circular polarization vectors should be the initial polarization vectors operated on by the same rotation so they should be:
##\epsilon 3 = \frac{1}{\sqrt{2}}(0,1,icos\theta,-isin\theta)## and ##\epsilon 4 = \frac{1}{\sqrt{2}}(0, 1, -icos\theta, isin\theta)##
Following the calculation done in section 5.3 of Schwartz's QFT and The Standard Model, the matrix element, M, should have two contributions M1 and M2.
M1=ϵ1ϵ3+ϵ1ϵ4
M2=ϵ2ϵ3+ϵ2ϵ4
However when I do these calculations I get that M1 = M2 = 1, ##|M|^{2} = |M1|^{2} + |M2|^{2} = 1+1 = 2##, which does not match with the result obtained from using linear polarization: ##|M|^{2} = 1+cos^{2}\theta##
I'm not really sure where the calculation is going wrong, this should match with the linear polarization result.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top