Can a Compass Needle be Magnetized to Any Horizontal Direction?

In summary, it is possible to magnetize a compass needle so that it points in any direction, but doing so requires more energy than is necessary to magnetize it along its long axis.
  • #1
Hornbein
2,652
2,219
A compass needle can be magnetized to point to the north. Am I correct in thinking that the needle could have been magnetized to point to any other horizontal direction?
 
Physics news on Phys.org
  • #3
I don't see why you couldn't magnetize a piece of iron so that its field was not parallel to the long axis.
 
  • #4
Ibix said:
I don't see why you couldn't magnetize a piece of iron so that its field was not parallel to the long axis.
Right, this is what I had in mind.
 
  • #5
But if you did that, the torque due to an external field would be much less.
I would be inclined to have a plastic disc with an arrow E-W or NE-SW or whatever you want, but keep the long magnet beneath aligned N-S.
 
  • Like
Likes berkeman, DaveE and Lnewqban
  • #6
Whilst I would agree that a bar magnet can be magnetised along its length or across its width, I don't think it is possible to magnetise it in other directions. This is because the magnetising force, if oblique, can be resolved into vectors along and across the magnet. The vector along the magnet will create more flux than that across it, so the direction of magnetisation will be slewed towards the major axis. On the other hand, magnetising the bar across its width is possible because the magnetising force will be at right angles to the long dimension and not have a longitudinal vector. In summary, the applied magnetising force will always be resolved along the axes of symmetry and this will favour the major axis.
 
  • Informative
Likes anorlunda
  • #7
Iron has a cubic crystal structure so exhibits cubic magnetic anisotropy, i.e. it takes less energy to magnetise a sample along the directions parallel to the lattice edges ("easy axes"). You can still magnetise the sample at arbitrary angles to these favoured directions, at an energy cost which goes as sin2.
 
  • Like
Likes vanhees71
  • #8
I'm not sure whether you're saying, you can't magnetise a needle obliquely, or if you can, that it won't retain its magnetism?
If the former, could you not use five carefully shaped pieces of iron to 'fool' the magnetic field into going where you want it whilst magnetising the needle? (3 is the needle.)
And to mitigate the latter problem, use these pieces as 'keepers' ? (That might prejudice its utility as a compass! Though a compass that points on a bearing of 71.5 degrees magnetic, may not be the most useful compass in the world?)
compass.png
 

FAQ: Can a Compass Needle be Magnetized to Any Horizontal Direction?

Can a compass needle be magnetized to any horizontal direction?

Yes, a compass needle can be magnetized to point in any horizontal direction. By exposing the needle to a strong magnetic field oriented in the desired direction, the needle's magnetic domains can be aligned accordingly.

How does the Earth's magnetic field affect a magnetized compass needle?

The Earth's magnetic field exerts a force on the magnetized compass needle, causing it to align with the magnetic north and south poles. If the needle is magnetized in a different direction, it will experience a torque that tries to reorient it to align with the Earth's magnetic field.

Can a compass needle be demagnetized?

Yes, a compass needle can be demagnetized by exposing it to a strong alternating magnetic field or by heating it to a high temperature (Curie point) where the material loses its magnetic properties.

What methods can be used to magnetize a compass needle?

Common methods to magnetize a compass needle include stroking it with a strong magnet, placing it in a coil with a direct current, or exposing it to a strong magnetic field in the desired direction.

Will a magnetized compass needle always point to magnetic north?

A properly magnetized compass needle will align itself with the Earth's magnetic field, pointing towards the magnetic north. If it is magnetized in a different direction, it will not point to magnetic north until it is re-magnetized or allowed to realign with the Earth's magnetic field.

Similar threads

Replies
2
Views
939
Replies
11
Views
1K
Replies
31
Views
1K
Replies
2
Views
2K
Replies
1
Views
1K
Replies
19
Views
2K
Replies
8
Views
2K
Replies
8
Views
3K
Back
Top