MHB Can a Golfer's Shot Be Modeled by a Quadratic Equation?

  • Thread starter Thread starter Abdullah Qureshi
  • Start date Start date
  • Tags Tags
    Quadratic Relation
AI Thread Summary
The golfer's shot can be modeled using the quadratic equation h = -0.01875x^2 + 2.25x, where h represents the height of the ball and x is the horizontal distance from the shot's origin. To determine if the ball clears the tree, the height at x = 40 yards must be calculated. The maximum height of the ball can be found by analyzing the vertex of the quadratic equation. The discussion emphasizes the importance of showing work for each calculation to receive constructive feedback. Overall, the thread focuses on applying quadratic equations to real-world golfing scenarios.
Abdullah Qureshi
Messages
16
Reaction score
0
A golfer hits a tee shot into the rough and the ball stops approximately 120 yds from the green. There is a tree located 40 yds from the ball, directly in the path of the shot. The golfer decides to try to hit the ball over the tree. The path of the shot can be modeled by the equation h = -0.01875x2 + 2.25x, where h is the height of the ball and x is the horizontal distance in yards from where the second shot is taken. (6T/I, 2C)

i) How tall must the tree be to stop the ball?

ii) Does the golfer hit the green with the shot?

iii) What is the maximum height of the ball and when does it occur
 
Mathematics news on Phys.org
h = -0.01875x^2 + 2.25x
in future, use the caret symbol (^) to indicate an exponent

i) This one is simple ... what value should you use for x?

ii) let x = 120 ... what do you get for h? what does that value tell you?

iii) the solution to ii) should help you determine the max height
 
You understand that ''like" really means "Blast, Skeeter got to it before I did!"
 
skeeter said:
h = -0.01875x^2 + 2.25x
in future, use the caret symbol (^) to indicate an exponent

i) This one is simple ... what value should you use for x?

ii) let x = 120 ... what do you get for h? what does that value tell you?

iii) the solution to ii) should help you determine the max height
What is the answers
 
Abdullah Qureshi said:
What is the answers

You really need to show some effort by posting your work on each question, that way we can provide feedback as to where you are right or wrong.

I will not provide "answers".
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top