- #1
LayMuon
- 149
- 1
Homework Statement
Prove that in SL(2) group the matrix ## \begin{pmatrix} -1 & \lambda \\ 0 & -1 \end{pmatrix} ## can not be presented as a single exponentail but instead as product of two exponentials of ##sl(2)## algebra. ##\lambda \in \mathbb{R} ##
Homework Equations
I don't understand how an element of Lie group cannot be presented by a single exponential. Does this mean that SL(2) is not a Lie group? or a Lie group that has some elements that cannot be cast into exponential form? So Lie group with no exponential form for some elements?
The Attempt at a Solution
stuck with definitions.