B Can an Object with N Dimensions Exist in N-1 Dimensions?

  • B
  • Thread starter Thread starter duyix
  • Start date Start date
  • Tags Tags
    2d 3d Space
AI Thread Summary
An object with N dimensions cannot exist entirely in N-1 dimensions, as the fundamental properties of dimensions dictate that each dimension requires a corresponding degree of freedom. An infinitely flat object, such as a plane, is inherently two-dimensional and can be described by two non-parallel direction vectors, indicating it has only two degrees of freedom. Various mathematical results, including those related to embedding spaces, support the conclusion that higher-dimensional objects cannot be fully represented in lower-dimensional spaces. The discussion highlights the importance of understanding the definitions of dimensions and the implications of embedding in mathematical contexts. Overall, the consensus is that dimensionality is a strict constraint that cannot be bypassed.
duyix
Messages
1
Reaction score
1
I am concerned that this question may instead be a philosophical one although if it it mathematical, any insights would be very appreciated. The question is this; could an object of N dimensions exist entirely in N-1 dimensions? In other words, could an infinitely flat object have 3 degrees of freedom and also be able to fit entirely in 2D space? Thank you and please excuse any naivety
 
Mathematics news on Phys.org
duyix said:
The question is this; could an object of N dimensions exist entirely in N-1 dimensions?
No, it's not possible.

duyix said:
In other words, could an infinitely flat object have 3 degrees of freedom and also be able to fit entirely in 2D space? [\quote]
If by "infinitely flat object" you mean "a plane" it's already a two-dimensional object that can be determined by two nonparallel direction vectors. I.e., two degrees of freedom.
 
Last edited:
There are different definitions of the term Dimension. One of them is that of number of data points needed to fully describe every point in the n-th dimensional object. And that number is precisely n.
There are results to the effect that ##\mathbb R^{n+k} ; k >0 ##; k a positive Integer, cannot be embedded in ##\mathbb R^n ##. There are similar results for n-spheres ## S^n ##. that cannot be embedded in ## \mathbb R^n ## or lower IIRC, the main result is that of Borsuk -Ulam.

Edit: A 1-dimensional object embedded in n-space is describable as ##(f_1(x), f_2(x),...,f_n(x))##.
An m-dimensional object in k-space is describable as ## (f_1(x_1,..., x_m), f_2(x_1,x_2,..,x_m),,..,f_k(x_1,x_2,..,x_m) )##
 
Last edited:
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top