- #36
- 8,943
- 2,949
So in terms of games, the winning strategy for the verifier that "Every list of real numbers omits at least one real number" is Cantor's diagonal strategy.
The statement is ##\forall L\ \exists r\ \forall n\ : r \neq L(n)##
(where ##L## is restricted to a function from naturals to reals, ##r## is restricted to be a real, ##n## is restricted to be a natural)
The game plays out by the falsifier picking ##L##, the verifier picking ##r##, the falsifier picking ##n##, then checking whether ##r \neq L(n)##.
The statement is ##\forall L\ \exists n\ \forall n'\ : n \neq L(n')##
(where ##L## is restricted to a function from naturals to naturals, ##n## and ##n'## are restricted to be naturals)
The game plays out by the falsifier picking ##L##, then the verifier picks ##n##, then the falsifier picks ##n'## then checking whether ##n \neq L(n')##.
The statement is ##\forall L\ \exists r\ \forall n\ : r \neq L(n)##
(where ##L## is restricted to a function from naturals to reals, ##r## is restricted to be a real, ##n## is restricted to be a natural)
The game plays out by the falsifier picking ##L##, the verifier picking ##r##, the falsifier picking ##n##, then checking whether ##r \neq L(n)##.
- The falsifier picks any list ##L##. Let ##L(m)[n]## be the ##n^{th}## decimal in the expansion of real number ##m## in the list ##L##.
- The verifier picks a number ##r## such that the decimal expansion of ##r## has as its ##n^{th}## decimal: ##r[n] = L(n)[n] +1## (unless ##L(n)[n] = 9##, in which case ##r[n] = 0##)
- Then whatever natural number ##n## is chosen by the falsifier, the verifier shows that ##r[n] \neq L(n)[n]##. That shows that ##r \neq L(n)##.
The statement is ##\forall L\ \exists n\ \forall n'\ : n \neq L(n')##
(where ##L## is restricted to a function from naturals to naturals, ##n## and ##n'## are restricted to be naturals)
The game plays out by the falsifier picking ##L##, then the verifier picks ##n##, then the falsifier picks ##n'## then checking whether ##n \neq L(n')##.
- The falsifier picks the list ##L## where ##L(n) = n##.
- The verifier picks a natural number ##n##.
- The falsifier picks ##n' = n##
- We check if ##n \neq L(n')##. That's false. So verifier loses.
Last edited: