Can e Be Defined as a Limit with n Approaching Negative Infinity?

  • Thread starter Thread starter PFuser1232
  • Start date Start date
  • Tags Tags
    Definition Limits
PFuser1232
Messages
479
Reaction score
20
I am familiar with the fact that the number e can be defined several ways. One particularly interesting definition is the one based on limits, namely:
e = limn \rightarrow ∞ (1 + \frac{1}{n})n
My question is: wouldn't it be equally true to express e as the limit of the expression above as n goes to NEGATIVE infinity?
 
Physics news on Phys.org
According to WolframAlpha, that is quite correct. The proof below is for positive infinity (WA won't show the step-by-step solution for the negative version unless I buy a pro subscription), but the steps are equally valid for negative infinity in this case.

limits-01.png


(Open the image in a new tab if you see it with a black background.)
 
  • Like
Likes 1 person
"My question is: wouldn't it be equally true to express e as the limit of the expression above as n goes to NEGATIVE infinity?"

Yes it is. The verification is an exercise in algebra and exponent chasing.

If m is a negative integer then m = -n for a positive integer n. For n > 1 this gives

\begin{align*} \left(1 + \frac 1 m\right)^m &amp; = \left(1 - \frac 1 n \right)^{-n} = \left(\frac{n - 1}n\right)^{-n} \\<br /> &amp; = \left(\frac n {n-1}\right)^n = \left(\frac n {n-1}\right) \cdot \left(\frac n {n-1}\right)^{n-1} \\<br /> &amp; = \left(\frac n {n-1} \right) \cdot \left(\frac{n-1}{n-1} + \frac 1 {n-1}\right)^{n-1} \\<br /> &amp; = \left(\frac n {n-1} \right) \cdot \left( 1 + \frac 1 {n-1}\right)^{n-1} = A_n \cdot B_n \text{ (say)}<br /> \end{align*}<br />

Note that \lim_{m \to -\infty} \left(1 + \frac 1 m\right)^m equals \lim_{n \to \infty} \left(1 - \frac 1 n \right)^{-n}

Since
<br /> \begin{align*}<br /> \lim_{n \to \infty} \left( \frac n {n-1}\right) &amp; = 1 \\<br /> \text{and}\\<br /> \lim_{n \to \infty} \left(1 + \frac 1 {n-1}\right)^{n-1} &amp; = \lim_{n \to \infty} \left(1 + \frac 1 n%<br /> \right)^n = e<br /> \end{align*}<br />

putting everything together gives

<br /> \lim_{m \to -\infty} \left(1 + \frac 1 m\right)^m = \lim_{n \to \infty} \left(1 - \frac 1 n\right)^{-n} = e <br />
 
statdad said:
"My question is: wouldn't it be equally true to express e as the limit of the expression above as n goes to NEGATIVE infinity?"

Yes it is. The verification is an exercise in algebra and exponent chasing.

If m is a negative integer then m = -n for a positive integer n. For n &gt; 1 this gives

\begin{align*} \left(1 + \frac 1 m\right)^m &amp; = \left(1 - \frac 1 n \right)^{-n} = \left(\frac{n - 1}n\right)^{-n} \\<br /> &amp; = \left(\frac n {n-1}\right)^n = \left(\frac n {n-1}\right) \cdot \left(\frac n {n-1}\right)^{n-1} \\<br /> &amp; = \left(\frac n {n-1} \right) \cdot \left(\frac{n-1}{n-1} + \frac 1 {n-1}\right)^{n-1} \\<br /> &amp; = \left(\frac n {n-1} \right) \cdot \left( 1 + \frac 1 {n-1}\right)^{n-1} = A_n \cdot B_n \text{ (say)}<br /> \end{align*}<br />

Note that \lim_{m \to -\infty} \left(1 + \frac 1 m\right)^m equals \lim_{n \to \infty} \left(1 - \frac 1 n \right)^{-n}

Since
<br /> \begin{align*}<br /> \lim_{n \to \infty} \left( \frac n {n-1}\right) &amp; = 1 \\<br /> \text{and}\\<br /> \lim_{n \to \infty} \left(1 + \frac 1 {n-1}\right)^{n-1} &amp; = \lim_{n \to \infty} \left(1 + \frac 1 n%<br /> \right)^n = e<br /> \end{align*}<br />

putting everything together gives

<br /> \lim_{m \to -\infty} \left(1 + \frac 1 m\right)^m = \lim_{n \to \infty} \left(1 - \frac 1 n\right)^{-n} = e <br />

But why should we consider the constraint n>1? Isn't it enough to say n>0?
 
"But why should we consider the constraint n>1? Isn't it enough to say n>0?"

For the limit it doesn't matter. But for the steps in my approach to work I need n &gt; 1 because
of the introduction of the denominators of n - 1 .
 
Back
Top