Can erf(x) be used to solve e^(x^2)?

  • Thread starter Thread starter newton1
  • Start date Start date
  • Tags Tags
    Integrate
Click For Summary
The discussion centers on whether the integral of e^(x^2) can be expressed in terms of elementary functions. While e^(x^2) is a continuous function and has an anti-derivative, it is not an elementary function. The anti-derivative of e^(x^2) cannot be expressed using standard functions like polynomials or exponentials. The Error Function, erf(x), is mentioned as an anti-derivative for e^(-x^2), but it does not directly apply to e^(x^2). Thus, while e^(x^2) has an integral, it does not have a simple expression in terms of elementary functions.
newton1
Messages
151
Reaction score
0
does the integrate e^(x^2) can solve??
i think is no...
but why??
 
Last edited by a moderator:
Mathematics news on Phys.org
That depends upon exactly what you mean.

Since e^(x^2) is a continuous function, yes, it HAS an integral (anti-derivative). Every continuous function (and many non-continuous functions) is the derivative of some function and therefore has an anti-derivative.

Is that anti-derivative any "elementary function" (defined as polynomials, rational functions, exponentials, logarithms, trig functions and combinations of them)? No, if fact for most functions the anti-derivative is not an elementary function. (There are more functions in heaven and Earth than are dreamed of in your philosophy, Horatio!)

Of course one can always DEFINE a new function to do the job. I don't know specifically about e^(x^2) but the ERROR FUNCTION, Erf(x) is defined as an anti-derivative of e^(-x^2).
 
eh...

may i ask what is Error Function??
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
10
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K