Can Electron Degeneracy Pressure be Visualized?

Positron137
Messages
41
Reaction score
0
I have a question: is there any way to accurately "visualize" the phenomenon of electron degeneracy pressure? I understand that the main concept behind it is the Pauli Exclusion Principle. However, I was reading about the Chandrasekhar limit, and that it's derived from the fact that although a white dwarf bears immense gravitational inward pressure, the degeneracy pressure prevents collapse (for stars' masses <= 1.44 solar masses). I can roughly visualize an image of extreme external pressure from gravity. However, I was wondering if there was a way to visualize the degeneracy pressure. (I know Quantum mechanics is extremely abstract, but I was hoping that there might be a possible way of picturing the degeneracy pressure).
 
Physics news on Phys.org
Sorry this wasn't answered a long time ago. Degeneracy pressure is not hard to picture at all, it is the pressure you get when you have a certain amount of kinetic energy in a box of given volume. It makes no difference if the gas is degenerate or ideal, you get the same pressure in there, and for the same reason: the particles carry momentum as they bounce off the walls, and the amount of momentum they carry, and the rate they bounce off the walls, yields a pressure that depends only on the kinetic energy per volume. You don't need any quantum mechanics to picture where the pressure comes from, you only need quantum mechanics to know the minimum amount of pressure that the particles in a box like that could ever produce, and that is what is known as "degeneracy pressure."
 
Thanks! This clears things up a lot.
 
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Back
Top