- #1
delgeezee
- 12
- 0
Let A be a square matrix,
a) show that \(\displaystyle (I-A)^{-1}= I + A + A^2 + A^3 if A^4 = 0\)
b) show that \(\displaystyle (I-A)^{-1}= I + A + A^2+...+A^n \) if \(\displaystyle
A^{n+1}= 0\)
a) show that \(\displaystyle (I-A)^{-1}= I + A + A^2 + A^3 if A^4 = 0\)
b) show that \(\displaystyle (I-A)^{-1}= I + A + A^2+...+A^n \) if \(\displaystyle
A^{n+1}= 0\)