Can one diagonalize the Kerr metric?

arroy_0205
Messages
127
Reaction score
0
Is it possible to diagonalize the Kerr metric in the Boyer-Lindquist coordinates? If so then I think calculations with the metric will become easier. I forget under what condition a matrix can be diagonalized. Can anybody remind me?
 
Physics news on Phys.org
I think if you transform to a co-rotating frame, the off-diagonal term will be zero. I might try it when I have more time.

[edit] I have since discovered that this transformation does not diagonalise the metric.

M
 
Last edited:
Unfortunately, it is not possible. The reason that one can get as close as one off-diagonal term is a theorem by Achille Papapetrou. This requires that the metric be well-behaved on the axis of rotation. (Roy Kerr)
 
Sorry to bump an old thread, but is it possible to diagonalize the metric every where except on the axis of rotation? In other words, is the problem that no general diagonalization exists, or that it is simply a non-diagonalizable matrix? The second seems improbable to me, since the metric is symmetric and thus always diagonalizable, even unitarily, but I don't know much about the Kerr solution so maybe something weird is going on.
 
Notice who made post #3.

Every spacetime metric is diagonalizable, but not necessarily by a coordinate basis, i.e., there does not necessarily exist a coordinate system that diagonalizes the metric.
 
Isn't diagonalizability in a certain choice of coordinates equivalent to staticity? Since the Kerr metric isn't static, it seems to me that we don't need no fancy theorems as claimed in #3. Am I oversimplifying or getting something wrong?
 
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
Thread 'Relativity of simultaneity in actuality'
I’m attaching two figures from the book, Basic concepts in relativity and QT, by Resnick and Halliday. They are describing the relativity of simultaneity from a theoretical pov, which I understand. Basically, the lightning strikes at AA’ and BB’ can be deemed simultaneous either in frame S, in which case they will not be simultaneous in frame S’, and vice versa. Only in one of the frames are the two events simultaneous, but not in both, and this claim of simultaneity can be done by either of...
Back
Top