MHB Can Trig Identities be Derived from Easier Formulas?

AI Thread Summary
The discussion explores the derivation of trigonometric identities, specifically focusing on whether the formula for tan(2a) can be derived from simpler formulas, similar to how sin(2a) and cos(2a) can be derived from Euler's identity. Participants suggest using the addition formula for tangent, which states that tan(A+B) = (tan(A) + tan(B)) / (1 - tan(A)tan(B)), as a straightforward method. Another approach discussed involves expressing tan(2a) as sin(2a)/cos(2a) and manipulating it using known values for sin(2a) and cos(2a). The conversation also touches on geometric methods for deriving sine addition formulas. Overall, the thread emphasizes the connections between different trigonometric identities and their derivations.
hatelove
Messages
101
Reaction score
1
I know you can derive the double angle formulas for sin(2a) and cos(2a) from Euler's identity, but is there any way to derive the tan(2a) in a similar manner from an easier formula? What about the addition/subtraction formulas (i.e. sin(a+b), etc.)
 
Mathematics news on Phys.org
daigo said:
I know you can derive the double angle formulas for sin(2a) and cos(2a) from Euler's identity, but is there any way to derive the tan(2a) in a similar manner from an easier formula? What about the addition/subtraction formulas (i.e. sin(a+b), etc.)

Using the addition formula for tan would be the easiest: $\tan(A+B) = \frac{\tan(A)+\tan(B)}{1-\tan(A)\tan(B)}$

Alternatively you can use the fact that $\tan(ax) = \frac{\sin(ax)}{\cos(ax)}$ (where a is a constant) together with your values for sin(2a) and cos(2a).
 
Last edited:
daigo said:
I know you can derive the double angle formulas for sin(2a) and cos(2a) from Euler's identity, but is there any way to derive the tan(2a) in a similar manner from an easier formula? What about the addition/subtraction formulas (i.e. sin(a+b), etc.)

\[\tan(2a)=\frac{\sin(2a)}{\cos(2a)}=\frac{2\sin(a) \cos(a)}{\cos^2(a)-\sin^2(a)}\]

Now divide top and bottom by \(\cos^2(a)\)

CB
 
daigo said:
I know you can derive the double angle formulas for sin(2a) and cos(2a) from Euler's identity, but is there any way to derive the tan(2a) in a similar manner from an easier formula? What about the addition/subtraction formulas (i.e. sin(a+b), etc.)

In...

http://mathworld.wolfram.com/TrigonometricAdditionFormulas.html

... a purely geometric way to obtain the sine of the sum of two angles is given...

Kind regards

chi sigma
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top