Can You Help Solve This Generalized Work Problem with an Illustrative Image?

AI Thread Summary
The discussion revolves around solving a generalized work problem using an illustrative image. The user successfully solved part (a) of the problem but expressed uncertainty about parts (b) and (c). The solution for (a) involves energy conservation principles, leading to a formula for velocity in terms of height and friction. Additional guidance was provided regarding the inclusion of spring energy in part (b). Ultimately, the user received the necessary help to arrive at the correct answer.
Ced
Messages
4
Reaction score
0
Homework Statement
A crate of mass(m) is above a ramp of angle theta and a distance(L) from a spring of constant k. The ramp and the crate have a coefficient of kinetic friction(μ)
a.) What is the crate's speed before it compresses the spring
b.) What is the maximum compression of the spring
c.) How far does the box get to its initial distance once it rebounds.
Relevant Equations
I think the relevant equations are
1. Ki + Ui + Wext = Kf + Uf
2. Elastic energy U=\frac{1}{2} k \Delta x^{2}
Here is an image for better illustration,
Capture.JPG


I only managed to solve for (a) but I'm not sure if I did it right. As for (b) and (c), I have no idea how to do it.

My answer for (a):
=> Ki + Ui + Wext = Kf + Uf
=> 0+mgh1-LμmgCosΘ = 1/2mv^2 + mgh2
=>1/2v^2 = gh1- gh2 - LμgCosΘ
=> V = √2g(h1 - h2 - LμCosΘ)
 
Physics news on Phys.org
You can express h1 - h2 in terms of L and theta. Part b will have a term for the spring energy at maximum compression on the final side.
 
Zexuo said:
You can express h1 - h2 in terms of L and theta. Part b will have a term for the spring energy at maximum compression on the final side.
Thank you so much! I got the answer now. You helped me a lot!
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top