Can you prove the cosine rule for three angles in a triangle?

In summary, "Trigonometric Challenge VI" is a unique mathematical puzzle that involves using trigonometric functions and equations to find a solution. It requires a strong understanding of trigonometry, problem-solving skills, and critical thinking. Unlike other trigonometry challenges, it may have its own set of rules or requirements. However, it can be solved without a calculator as long as the solver has a thorough understanding of trigonometric functions and their properties. Some tips for solving "Trigonometric Challenge VI" include drawing diagrams, breaking down the problem, and checking for errors.
  • #1
anemone
Gold Member
MHB
POTW Director
3,883
115
For all $x,\,y,\,z \in R$ with $x+y+z=2\pi$, prove that $\cos^2 x+\cos^2 y+\cos^2 z+2\cos x\cos y \cos z=1$
 
Mathematics news on Phys.org
  • #2
anemone said:
For all $x,\,y,\,z \in R$ with $x+y+z=2\pi$, prove that $\cos^2 x+\cos^2 y+\cos^2 z+2\cos x\cos y \cos z=1$
$\cos²x+\cos²y+\cos²z+2 \cos x \cos y \cos z $
= $cos²x+cos²y+cos²(\pi-z)+2 cos x cos y cos z$
= $cos²x+cos²y+cos²(x+y)+2 cos x cos y cos z$
= $cos²x+cos²y+(cos x cos y - sin x sin y)^2+2 cos x cos y cos z$
=$ cos²x+cos²y+ cos^2 x cos^2 y + sin ^2 x sin^2 y- 2 cos 2 x cos y sin x sin y+2 cos x cos y cos z$
= $cos²x+cos²y+ cos^2 x cos^2 y + ( 1- cos ^2 x)(1- cos ^2 y)- 2 cos 2 x cos y sin x sin y+2 cos x cos y cos z$
= $cos ^2 x + cos^2 y + cos^2 x cos^2 y + 1 – cos^2 x – cos^2 y + cos^2 x cos^2 y - 2 cos 2 x cos y sin x sin y+2 cos x cos y cos z$
= $1+ 2 cos^2 x cos^2 y - 2 cos 2 x cos y sin x sin y+2 cos x cos y cos z$
= $1 + 2 cos x cos y ( cos x cos y – sin x sin y)+2 cos x cos y cos z$
= $1 + 2 cos x cos y cos (x+y)+2 cos x cos y cos z$
= $1 – 2 cos x cos y cos (\pi – ( x + y))+2 cos x cos y cos z$
= $1 – 2 cos x cos y cos z+2 cos x cos y cos z$
= 1
 
Last edited:
  • #3
Thanks for participating, kaliprasad!

Another method would be to perceive the given equation as a quadratic equation $k^2+(2\cos y \cos z)k +(\cos^2 y+\cos^2 z-1)=0$ and our task is to show that this quadratic equation has a root $k=\cos x$.

By the quadratic formula, we have

$\begin{align*}k&=\dfrac{-2\cos y \cos z\pm\sqrt{4\cos^2 y \cos^2 z-4(\cos^2 y+\cos^2 z-1)}}{2}\\&=-\cos y \cos z\pm\sqrt{(1-\cos^2y)(1-\cos^2z)}\\&=-\cos y \cos z\pm|\sin y\sin z|\end{align*}$

Since $-\cos y \cos z+\sin y\sin z=-\cos(y+z)=\cos(\pi-x)=\cos x$, we find that $k=\cos x$ satisfies the quadratic equation, as desired.
 
  • #4
$\cos^2x+\cos^2y+\cos^2z+2\cos x\cos y\cos z=\cos^2x+\cos^2y+\cos^2(\pi−z)+2\cos x\cos y\cos z$
$=\cos^2x+\cos^2y+\cos^2(x+y)+2\cos x\cos y\cos z$
$=\cos^2x+\cos^2y+(\cos x\cos y−\sin x\sin y)^2+2\cos x\cos y\cos z$
$=\cos^2x+\cos^2y+\cos^2x\cos^2y+\sin^2x\sin^2y−2\cos x \cos y\sin x\sin y+2\cos x\cos y\cos z$
$=\cos^2x+\cos^2y+\cos^2x\cos^2y+(1−\cos^2x)(1−\cos^2y)−2\cos x\cos y\sin x\sin y+2\cos x\cos y\cos z$
$=\cos^2x+\cos^2y+\cos^2x\cos^2y+1–\cos^2x–\cos^2y+\cos^2x\cos^2y−2\cos x\cos y\ sin x\sin y+2\cos x\cos y\cos z$
$=1+2\cos ^2x \cos^2y−2\cos^2x\cos y\sin x\sin y+2\cos x\cos y \cos z$
$=1+2\cos x\cos y(\cos x\cos y–\sin x\sin y)+2\cos x\cos y\cos z$
$=1+2\cos x\cos y\cos(x+y)+2\cos x\cos y\cos z$
$=1–2\cos x\cos y\cos(π–(x+y))+2\cos x\cos y\cos z$
$=1–2\cos x\cos y\cos z+2\cos x\cos y\cos z=1$

rewrote the solution with the latex as previous solution to not clear to read
 
Last edited by a moderator:
  • #5


This is a well-known trigonometric identity known as the "cosine rule." It states that for any three angles in a triangle, the sum of the squares of the cosines of those angles plus twice the product of the cosines of the angles is equal to 1. This can be proven using the law of cosines and some basic algebraic manipulations. It is a fundamental and useful identity in trigonometry and has many applications in solving problems involving triangles and circles. This challenge serves as a good exercise in utilizing trigonometric identities and applying them in mathematical proofs.
 

FAQ: Can you prove the cosine rule for three angles in a triangle?

What is "Trigonometric Challenge VI"?

"Trigonometric Challenge VI" is a mathematical puzzle or problem that involves the use of trigonometric functions and equations to find a solution.

How is "Trigonometric Challenge VI" different from other trigonometry challenges?

"Trigonometric Challenge VI" is a specific puzzle that may have its own unique set of rules or requirements, whereas other trigonometry challenges may have different objectives or focuses.

What skills are needed to solve "Trigonometric Challenge VI"?

Solving "Trigonometric Challenge VI" requires a strong understanding of trigonometric functions, equations, and identities, as well as problem-solving and critical thinking skills.

Can "Trigonometric Challenge VI" be solved without a calculator?

Yes, "Trigonometric Challenge VI" can be solved without a calculator as long as the solver has a thorough understanding of trigonometric functions and their properties.

Are there any tips for solving "Trigonometric Challenge VI"?

Some tips for solving "Trigonometric Challenge VI" include drawing diagrams, breaking down the problem into smaller parts, and checking for potential errors or incorrect calculations.

Similar threads

Back
Top