MHB Can you prove the cosine rule for three angles in a triangle?

AI Thread Summary
The discussion centers on proving the identity $\cos^2 x + \cos^2 y + \cos^2 z + 2\cos x \cos y \cos z = 1$ for angles $x, y, z$ that sum to $2\pi$. Participants engage in rewriting the solution for clarity, emphasizing the need for clear presentation in LaTeX format. The proof involves trigonometric identities and properties of cosine functions related to angles in a triangle. The conversation highlights the importance of precise mathematical communication. The thread concludes with a focus on improving readability and understanding of the proof.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
For all $x,\,y,\,z \in R$ with $x+y+z=2\pi$, prove that $\cos^2 x+\cos^2 y+\cos^2 z+2\cos x\cos y \cos z=1$
 
Mathematics news on Phys.org
anemone said:
For all $x,\,y,\,z \in R$ with $x+y+z=2\pi$, prove that $\cos^2 x+\cos^2 y+\cos^2 z+2\cos x\cos y \cos z=1$
$\cos²x+\cos²y+\cos²z+2 \cos x \cos y \cos z $
= $cos²x+cos²y+cos²(\pi-z)+2 cos x cos y cos z$
= $cos²x+cos²y+cos²(x+y)+2 cos x cos y cos z$
= $cos²x+cos²y+(cos x cos y - sin x sin y)^2+2 cos x cos y cos z$
=$ cos²x+cos²y+ cos^2 x cos^2 y + sin ^2 x sin^2 y- 2 cos 2 x cos y sin x sin y+2 cos x cos y cos z$
= $cos²x+cos²y+ cos^2 x cos^2 y + ( 1- cos ^2 x)(1- cos ^2 y)- 2 cos 2 x cos y sin x sin y+2 cos x cos y cos z$
= $cos ^2 x + cos^2 y + cos^2 x cos^2 y + 1 – cos^2 x – cos^2 y + cos^2 x cos^2 y - 2 cos 2 x cos y sin x sin y+2 cos x cos y cos z$
= $1+ 2 cos^2 x cos^2 y - 2 cos 2 x cos y sin x sin y+2 cos x cos y cos z$
= $1 + 2 cos x cos y ( cos x cos y – sin x sin y)+2 cos x cos y cos z$
= $1 + 2 cos x cos y cos (x+y)+2 cos x cos y cos z$
= $1 – 2 cos x cos y cos (\pi – ( x + y))+2 cos x cos y cos z$
= $1 – 2 cos x cos y cos z+2 cos x cos y cos z$
= 1
 
Last edited:
Thanks for participating, kaliprasad!

Another method would be to perceive the given equation as a quadratic equation $k^2+(2\cos y \cos z)k +(\cos^2 y+\cos^2 z-1)=0$ and our task is to show that this quadratic equation has a root $k=\cos x$.

By the quadratic formula, we have

$\begin{align*}k&=\dfrac{-2\cos y \cos z\pm\sqrt{4\cos^2 y \cos^2 z-4(\cos^2 y+\cos^2 z-1)}}{2}\\&=-\cos y \cos z\pm\sqrt{(1-\cos^2y)(1-\cos^2z)}\\&=-\cos y \cos z\pm|\sin y\sin z|\end{align*}$

Since $-\cos y \cos z+\sin y\sin z=-\cos(y+z)=\cos(\pi-x)=\cos x$, we find that $k=\cos x$ satisfies the quadratic equation, as desired.
 
$\cos^2x+\cos^2y+\cos^2z+2\cos x\cos y\cos z=\cos^2x+\cos^2y+\cos^2(\pi−z)+2\cos x\cos y\cos z$
$=\cos^2x+\cos^2y+\cos^2(x+y)+2\cos x\cos y\cos z$
$=\cos^2x+\cos^2y+(\cos x\cos y−\sin x\sin y)^2+2\cos x\cos y\cos z$
$=\cos^2x+\cos^2y+\cos^2x\cos^2y+\sin^2x\sin^2y−2\cos x \cos y\sin x\sin y+2\cos x\cos y\cos z$
$=\cos^2x+\cos^2y+\cos^2x\cos^2y+(1−\cos^2x)(1−\cos^2y)−2\cos x\cos y\sin x\sin y+2\cos x\cos y\cos z$
$=\cos^2x+\cos^2y+\cos^2x\cos^2y+1–\cos^2x–\cos^2y+\cos^2x\cos^2y−2\cos x\cos y\ sin x\sin y+2\cos x\cos y\cos z$
$=1+2\cos ^2x \cos^2y−2\cos^2x\cos y\sin x\sin y+2\cos x\cos y \cos z$
$=1+2\cos x\cos y(\cos x\cos y–\sin x\sin y)+2\cos x\cos y\cos z$
$=1+2\cos x\cos y\cos(x+y)+2\cos x\cos y\cos z$
$=1–2\cos x\cos y\cos(π–(x+y))+2\cos x\cos y\cos z$
$=1–2\cos x\cos y\cos z+2\cos x\cos y\cos z=1$

rewrote the solution with the latex as previous solution to not clear to read
 
Last edited by a moderator:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top