- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
Positive integers $l,\,k,\,m,\,n$ satisfying $l+m \le 1982$ and $\dfrac{l}{k}+\dfrac{m}{n}<1$. Prove that $1-\dfrac{l}{k}-\dfrac{m}{n}>\dfrac{1}{1983^3}$.
Last edited: